
Fast and Guaranteed Safe Controller Synthesis
for Nonlinear Vehicle Models

Abstract. We address the problem of synthesizing a controller for non-
linear systems with reach-avoid requirements. Our controller consists of
a reference trajectory and a tracking controller which drives the actual
trajectory to follow the reference trajectory. We identify a type of refer-
ence trajectory such that the tracking error between the actual trajectory
of the closed-loop system and the reference trajectory can be bounded.
Moreover, such a bound on the tracking error is independent of the ref-
erence trajectory. Using such bounds on the tracking error, we propose
a method that can find a reference trajectory by solving a satisfiability
problem over linear constraints. Our overall algorithm guarantees that
the resulting controller can make sure every trajectory from the initial
set of the system satisfies the given reach-avoid requirement. We also
implement our technique in a tool FACTEST. We show that FACTEST
can find controllers for four vehicle models (3-6 dimensional state space
and 2-4 dimensional input space) across eight scenarios (with up to 22
obstacles), all with running time at the sub-second range.

1 Introduction

Design automation and safety of autonomous systems is an important research
area. Controller synthesis aims to provide correct-by-construction controllers
that can guarantee that the system under control meets certain requirements.
Controller synthesis is a type of program synthesis problem. The synthesized
program or controller g has to meet the given requirement R, when it is run in
(closed-loop) composition with a given physical process or plant A. Therefore, a
synthesis algorithm has to account for the combined behavior of g and A.

Methods for designing controllers for asymptotic requirements like stability,
robustness, and tracking, predate the algorithmic synthesis approaches for pro-
grams [19,32,3]. However, these classic control design methods normally do not
provide formal guarantees in terms of handling bounded-horizon requirements
like safety. Typical controller programs are small, well-structured, and at core,
have a succinct logic (“bang-bang” control) or mathematical operations (PID
control). This might suggest that controllers could be an attractive target for
algorithmic synthesis for safety, temporal logic (TL), and bounded time require-
ments [39,21,12,36,1].

On the other hand, motion planning (MP), which is an instance of the con-
troller synthesis for robots is notoriously difficult (see [24] Chapter 6.5). A typi-
cal MP requirement is to make a robot A track certain waypoints while meeting
some constraints. A popular paradigm in MP, called sampling-based MP, gives
practical, fully automatic, randomized, solutions to hard problem instances by
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only considering the geometry of the vehicle and the free space [23,18,24,17].
However, they do not ensure that the dynamic behavior of the vehicle will actu-
ally follow the planed path without running into obstacles. Ergo, MP continues
to be a central problem in robotics1.

In this paper, we aim to achieve faster control synthesis with guarantees by
exploiting a separation of concerns that exists in the problem: (A) how to drive
a vehicle/plant to a given waypoint? and (B) Which waypoints to choose for
achieving the ultimate goal? (A) can be solved using powerful control theoretic
techniques—if not completely automatically, but at least in a principled fashion,
with guarantees, for a broad class of A’s. Given a solution for (A), we solve (B)
algorithmically. A contribution of the paper is to identify characteristics of a
solution of (A) that make solutions of (B) effective.

In this paper, we will consider nonlinear control systems A : d
dtx = f(x, u)

and reach-avoid requirements defined by a goal set G that the trajectories should
reach, and obstacles O the trajectories should avoid. The above separation leads
to a two step process: (A) Find a state feedback tracking controller g that drives
the actual trajectory of the closed-loop system ξg to follow ξref. (B) Design a
reference trajectory ξref such that ξref can satisfy the reach-avoid requirement.
The distance between ξg and ξref is called the tracking error e. If we can somehow
know beforehand the value of e without knowing ξref, we can use such error to
bloat O and shrink G, and then synthesize ξref such that it is e away from the
obstacles (inside the goal set). For linear systems, this was the approach used
in [9], but for nonlinear systems, the tracking error e will generally change with
ξref, and the two steps get entangled.

For a general class of nonlinear vehicles (such as cars, drones, and underwater
vehicles), the tracking controller g is always designed to minimize the tracking
error. The convergence of the error can be proved by a Lyapunov function for
certain types of ξref. We show how, under reasonable assumptions, we can use
Lyapunov functions to bound the value of the tracking error even when the
waypoints changes (Lemma 2). This error bound is independent of ξref so long
as ξref satisfies the assumptions.

For step (B) we introduce an SAT-based trajectory planning methods to
find such ξref by solving a satisfiability (SAT) problem over quantifier free linear
real arithmetic (Theorem 1). Moreover, the number of constraints in the SMT
problem scales linearly to the increase of number of obstacles (and not with the
vehicle model). Thus, our methods can scale to complex requirements and high
dimensional systems.

Putting it all together, our final synthesis algorithm (Algorithm 2 guarantees
that any trajectory following the synthesized reference trajectory will satisfy the
reach-avoid requirements. The resulting tool FACTEST is tested with four non-
linear vehicle models and on eight different scenarios, taken from MP literature,
which cover a wide range of 2D and 3D environments. Experiment results show

1 In the most recent International Conference on Robotics and Automation, among
the 3,512 submissions “Path and motion planning” was the second most popular key
phrase.
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that our tool scales very well: it can find the small covers {Θj}j and the cor-
responding reference trajectories and control inputs satisfying the reach-avoid
requirements most often in less than a second, even with up to 22 obstacles. We
have also compared our SAT-based trajectory planner to a standard RRT plan-
ner, and the results show that our SAT-based method resoundly outperforms
RRT. To summarize, our main contributions are:

1. A method (Algorithm 2) for controller synthesis separating tracking con-
troller and search for reference trajectories.

2. Sufficient conditions for tracking controller error performance that makes
the decomposition work (Lemma 2 and Lemma 3).

3. An SMT-based effective method for synthesizing reference trajectories.
4. The FACTEST implementation of the above and its evaluation showing very

encouraging results in terms of finding controllers that make any trajectories
of the closed-loop system satisfy reach-avoid requirements (Section 6).

Related works Model Predictive Control. Implicit MPC [28] has to solve a
constrained, discrete-time, optimal control problem. When an explicit offline
solution is possible, online operations reduce to function evaluation [4,47,51].
MPC for controller synthesis typically requires model reduction for casting the
optimization problem as an LP [4], QP [2,37], MILP [47,35,36]. However, when
the plant model is nonlinear [11,25], it may be hard to balance speed and complex
requirements as the optimization problem become nonconvex and nonlinear.

Discrete abstractions. Discrete, finite-state, abstraction of the control system
is computed, and then a discrete controller is synthesized by solving a two-player
game [43,13,27,20,50,20,49,44]. CoSyMA [30], Pessoa [38], LTLMop [48,21],
Tulip [50,12], and SCOTS [39] are based on these approaches. The discretization
step often leads to a severe state space explosion for higher dimensional models.

Safe motion planning The idea of bounding the tracking error through pre-
computation has been used in several: FastTrack [14] uses Hamilton-Jacobi
reachability analysis to produce a “safety bubble” around planed paths. Reacha-
bility based trajectory design for dynamical environments (RTD) [46] computes
a offline forward reachable sets to guarantee that the robot is not-at-fault in
any collision. In [41], a technique based on convex optimization is used to com-
pute tracking error bounds. Another technique [45,26] uses motion primitives
expanded by safety funnels, which defines similar ideas of safety tube.

Sampling based planning. Probabilistic Road Maps (PRM) [18], Rapidly-
exploring Random Trees (RRT) [22], and fast marching tree (FMT) [15] are
widely used in actual robotic platforms. They can generate feasible trajectories
through known or partially known environments. Compared with the determin-
istic guarantees provided by our proposed method, these methods come with
stochastic guarantees. Also, they are not designed to be robust to model uncer-
tainty or disturbances. MoveIT [6] is a tool designed to implement and bench-
mark various motion planners on robots. The motion planners in MoveIT are
from the open motion planning library (OMPL) [42], which implements motion
planners abstractly.
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2 Preliminaries and problem Statement

Let us denote the set of all real numbers by R, the set of non-negative real
numbers by R≥0, and the set of natural numbers by N. The n-dimensional Eu-
clidean space is Rn. For an n-dimensional vector x, x(i) is the ith entry of x. For
any matrix A ∈ Rn×m, Aᵀ is its transpose; A(i) is the ith row of A. Given any
vector x, ‖x‖2 is the 2-norm of x. Given a r ≥ 0, an r-ball around x ∈ Rn is
defined as Br(x) = {x′ ∈ Rn | ||x′ − x||2≤ r}. We call r the radius of the ball.
Given a matrix H ∈ Rr×n and a vector b ∈ Rr, an (H, b)-polytope denoted by
Poly(H, b) = {x ∈ Rn | Hx ≤ b}. Each row of the inequality H(i)x ≤ b(i) defines
a halfspace. We also call H(i)x = b(i) the surface of the polytope. Let dP(H) = r
denotes the number of rows in H. Given a set S ⊆ Rn, the radius of S is defined
as supx,y∈S‖x− y‖2/2.

State space and workspace. The state space of control systems will be a subspace
X ⊆ Rn. The workspace is a subspace W ⊆ Rd, for d ∈ {2, 3}, which is the
physical space in which the robots have to avoid obstacles and reach goals.
Given a state vector x ∈ X , its projection to W is denoted by xdp. That is,
xdp = [px, py]ᵀ ∈ R2 for ground vehicles on the plane and xdp = [px, py, pz]

ᵀ ∈ R3

for aerial and underwater vehicles. When x is clear from context we will write
xdp as simply p. The vector x may include other variables like velocity, heading,
pitch, etc., but p only has the position in Cartesian coordinates. We assume that
the goal set G := Poly(HG, bG) and the unsafe set O (obstacles) are specified by
polytopes in W; O = ∪Oi, where Oi := Poly(HO,i, bO,i) for each obstacle i.

Trajectories and reach-avoid requirements. A trajectory ξ over X of duration T
is a function ξ : [0, T ]→ X , that maps each time t in the time domain [0, T ] to a
point ξ(t) ∈ X . The time bound or duration of ξ is denoted by ξ.ltime = T . The
projection of a trajectory ξ : [0, T ]→ X toW is written as ξ ↓ p : [0, T ]→W and
defined as (ξ ↓ p)(t) = ξ(t)dp. We say that a trajectory ξ(t) satisfies a reach-avoid
requirement given by unsafe set O and goal set G if ∀t ∈ [t, ξ.ltime], ξ(t)dp /∈ O
and ξ(ξ.ltime)dp ∈ G. See Figure 1 for an example of a reach avoid requirement.

Given a trajectory ξ : [0, T ] → X and a time t > 0, the time shift of ξ is a
function (ξ + t) : [t, t+ T ]→ X defined as ∀, t′ ∈ [t, t+ T ], (ξ + t)(t′) = ξ(t′ − t).
Strictly speaking, for t > 0, ξ + t is not a trajectory. The concatenation of two
trajectories ξ1 _ ξ2 is a new trajectory in which ξ1 is followed by ξ2. That is,
for each t ∈ [0, ξ1.ltime + ξ2.ltime],

(ξ1 _ ξ2)(t) =

{
ξ1(t) t ≤ ξ1.ltime
ξ2(t− ξ1.ltime) t > ξ1.ltime.

Trajectories are closed under concatenation, and many trajectories can be con-
catenated in the same way.

2.1 Nonlinear control system

Definition 1. An (n,m)-dimensional control system A is a 4-tuple 〈X ,Θ,U, f〉
where (i) X ⊆ Rn is the state space, (ii) Θ ⊆ X is the initial set, (iii) U ⊆ Rm



Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 5

is the input space, and (iv) f : X × U → X is the dynamic function that is
Lipschitz continuous with respect to the first argument.

A control system with no inputs (m = 0) is called a closed system.
Let us fix a time duration T > 0. An input trajectory u : [0, T ] → U, is a

continuous trajectory over the input space U. We denote the set of all possible
input trajectories to be U . Given an input signal u ∈ U and an initial state
x0 ∈ Θ, a solution of A is a continuous trajectory ξu : [0, T ] → X that satisfies
(i) ξu(0) = x0 and (ii) for any t ∈ [0, T ], the time derivative of ξu at t satisfies
the differential equation:

d

dt
ξu(t) = f(ξu(t), u(t)). (1)

For any x0 ∈ Θ, u ∈ U , ξu is a state trajectory and we call such a pair (ξu, u) a
state-input trajectory pair.

A reference state trajectory (or reference trajectory for brevity) is a trajectory
over X that the control system tries to follow. We denote reference trajectories
by ξref. Similarly, a reference input trajectory (or reference input) is a trajectory
over U and we denote them as uref. Note these ξref and uref are not necessarily
solutions of (1). Figure 1 shows reference and actual solution trajectories.

Given a reference trajectory ξref and a reference input uref, a reference con-
troller is a function that is used to compute the inputs for A so that in the
resulting closed system, the state trajectories try to follow ξref.

Definition 2. Given an (n,m)-dynamical system A, a reference trajectory ξref,
and a reference input uref, a reference controller for the triple 〈A, ξref, uref〉 is a
(state feedback) function g : X × X ×U→ U.

At any time t, the reference controller function takes in a current state of the
system x, a reference trajectory state ξref(t), and a reference input uref(t), and
gives an input g(x, ξref(t), uref(t)) ∈ U for A. By plugging this input into the
dynamics of A, we get a closed control system.

Given a reference trajectory ξref and a reference input uref, a reference con-
troller g, and an initial state x0 ∈ Θ, the resulting trajectory ξg of the closed
control system (A closed with g) satisfies:

d

dt
ξg(t) = f (ξg(t), g (ξg(t), ξref(t), uref(t))) ,∀ t ∈ [0, T ]\D, (2)

where D is the set of points in time where the second or third argument of g is
discontinuous2.

2.2 Controller synthesis problem

Definition 3. Given a (n,m)-dimensional continuous time nonlinear system
A = 〈X ,Θ,U, f〉, its workspace W, goal set G ⊆ W and the unsafe set O ⊆ W,

2 ξg is a standard solution of ODE with piece-wise continuous right hand side.
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we are required to find (a) a reference controller g, (b) a partition {Θj}j of Θ,
and (c) for each partition Θj, a reference state trajectory ξj,ref and a reference
input uj,ref, such that ∀x0 ∈ Θj, the unique trajectory ξg of the closed system (A
closed with g) starting from x0 satisfies the reach-avoid requirement.

Again, ξj,ref and uj,ref are not required to be a state-input pair, but, for
each initial state x0 ∈ Θj , the closed loop trajectory ξg following ξref is a valid
state trajectory with corresponding input u generated by g(). In this paper,
we will decompose the controller synthesis problem: Part (a) will be delivered
by design engineers with knowledge of vehicle dynamics, and parts (b) and (c)
will be automatically synthesized by our algorithm. The latter being the main
contribution of the paper.

For the remainder of the paper, we will fix a nonlinear control system A
and a tracking controller g which will satisfy certain properties that we will
spell out later. We will also fix the goal set G = Poly(HGq, bG), and obstacles
O = {Oi = Poly(HO,i, bO,i)}.

Example 1. Consider a ground vehicle moving on a 2D workspace W ⊆ R2 as
shown in Figure 1. This scenario is called Zigzag and it is adopted from [34].
The red polytopes are obstacles. The blue and green polytopes are the initial
set Θ and goal the set G. There are also obstacles (not shown in the figure)
defining the boundaries of the entire workspace. The black line is a projection
of a reference trajectory to the workspace: ξref(t)dp. This would not be a feasible
state trajectory for a ground vehicle that cannot make sharp turns. The purple
dashed curve is a real feasible state trajectory of the system with a controller
controller g starting from Θ, where g will be introduced in Example 2.

Fig. 1: Zigzag scenario for a controller synthesis problem. The initial set is blue, the goal set is
green, and the unsafe sets are red. A valid reference trajectory is shown in black and a feasible
trajectory is shown in purple.

Consider the standard nonlinear bicycle model of a car [33]. The control
system has 3 state variables: the position px, py, and the heading direction θ. Its
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motion is controlled by two inputs: linear velocity v and rotational velocity ω.
The car’s dynamics are given by:

d
dtpx = v cos(θ), ddtpy = v sin(θ), ddtθ = ω. (3)

3 Constructing reference trajectories from waypoints

If ξref(t)dp is a piece-wise linear line in the workspace W, we call ξref(t) a piece-
wise linear reference trajectory. InW, a piece-wise linear line can be determined
by the endpoints of each line segment. We call such endpoints the waypoints of
the piece-wise reference. In Figure 1, the black points p0, · · · , p6 are waypoints
of p(t) = ξref(t)dp.

Consider any vehicle on the plane3 with state variables px, py, θ, v (x-position,
y-position, heading direction, linear velocity) and input variables a, ω (acceler-
ation and angular velocity). Once the waypoints {pi}ki=0 are fixed, and if we
enforce constant speed v̄ (i.e., ξref(t)dv = v̄ for all t ∈ [0, ξref.ltime]), then ξref(t)
can be uniquely defined by {pi}ki=0 and v̄ using Algorithm 1. The semantics of
ξref and uref returned by Waypoints to Traj is that the reference trajectory re-
quires the vehicle to move at a constant speed v̄ along the lines connecting the
waypoints {pi}ki=0. In Example 1, ξref(t), uref(t) can also be constructed using
Waypoints to Traj moving v to input variables and dropping a.

We notice that if k = 1, ξref(t), uref(t) returned by Algorithm 1 is a valid
state-input trajectory pair. However, if k > 1, ξref(t), uref(t) returned by Al-
gorithm 1 is usually not a valid state-input trajectory pair. This is because
θref(t) is discontinuous at the waypoints and no bounded inputs uref(t) can
drive the vehicle to achieve such θref(t). Instead, ξref(t) a concatenation of ξref,i

where (ξref,i, uref,i) are state-input trajectory pairs returned by the function
Waypoints to Traj({pi−1, pi}, v̄) using Algorithm 1.

Algorithm 1: Waypoints to Traj({pi}ki=0, v̄)

input : {pi}ki=0, v̄

1 ∀t ∈ [0,
∑k
i=1

‖pj−pj−1‖2
v̄

], vref(t) = v̄, aref(t) = 0, ωref(t) = 0;

2 ∀i ≥ 1,∀t ∈
î∑i−1

j=1

‖pj−pj−1‖2
v̄

,
∑i
j=1

‖pj−pj−1‖2
v̄

ä
,

pref(t) = pi−1 + v̄t−
∑i−1
j=1 ‖pj − pj−1‖2,

θref(t) = mod(atan2((py,i − py,i−1), (px,i − px,i−1), 2π);
3 ξref(t) = [pref(t), θref(t), vref(t)];
4 uref(t) = [aref(t), ωref(t)];
5 return ξref(t), uref(t) ;

Proposition 1. Given a sequence of waypoints {pi}ki=0 and a constant speed v̄,
ξref(t), uref(t) produced by Waypoints to Traj({pi}ki=0, v̄) satisfy:

3 A similar construction works for vehicles in 3D workspaces with additional variables.
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– pref(t) = ξref(t)dp is a piece-wise continuous function connecting {pi}ki=0.

– At time ti =
∑i
j=1‖pj − pj−1‖2/v̄, pref(ti) = pi. We call {ti})ki=1 the con-

catenation time.
– ξref(t) = ξref,1(t) _ · · · _ ξref,k(t) and uref(t) = uref,1(t) _ · · · _ uref,k(t),

where (ξref,i, uref,i) are state-input trajectory pairs returned by the function
Waypoints to Traj({pi−1, pi}, v̄)

Outline of synthesis approach In this Section, we present an Algorithm
Waypoints to Trajectory for constructing reference trajectories from arbitrary
sequence of waypoints. In Section 4, we precisely characterize the type of vehicle
tracking controller our method requires from designers. In Appendix A, we show
with several examples that indeed developing such controllers is non-trivial, far
from automatic, yet bread and butter of control engineers. In Section 5, we
present the main synthesis algorithm, which uses the tracking error bounds from
the previous section, to construct waypoints, for each initial state, which when
passed through Waypoints to Trajectory provide the solutions to the synthesis
problem.

4 Bounding the error of a tracking controller

4.1 Tracking error and Lyapunov functions

Given a reference trajectory ξref and a reference input uref, a reference controller
g, and an initial state x0 ∈ Θ, the resulting trajectory ξg of the closed control
system (A closed with g) is a state trajectory that starts from x0 and follows
the ODE (2). In this setting, we define the tracking error at time t to be a
continuous function:

e : X × X → Rn.

When ξg(t) and ξref(t) are fixed, we also write e(t) = e(ξg(t), ξref(t)) which makes
it a function of time. One thing to remark here is that if ξref(t) is discontinuous,
then e(t) is also discontinuous. In this case, the derivative of e(t) cannot be
defined at the points of discontinuity. To start with, let us assume that (ξref, uref)
is a valid state-input pair so ξref is a continuous state trajectory. Later we will
see that the analysis can be extended to cases when ξref is discontinuous but a
concatenation of continuous state trajectories.

When (ξref, uref) is a valid state-input pair, by applying the chain rule of
differentiation to tracking error function e(t), it can be checked that its time
derivative satisfies the differential equation

d
dte(t) = ∂

∂x |x=ξg(t)e(x, y)f (ξg(t), g (ξg(t), ξref(t), uref(t)))

+ ∂
∂y |y=ξref(t)

e(x, y)f (ξref(t), uref(t)) ,∀t ∈ [0, ξref.ltime].
(4)

Next, we introduce a classic technique for proving stability of an equilibrium
of an ODE called Lyapunov functions. In this paper, we will use Lyapunov
functions to bound the tracking error. The Lie derivative ∂V

∂e fe(e) below captures
the rate of change of the function V along the trajectories of e(t).
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Definition 4 (Lyapunov functions [19]). Fix a state-input reference trajec-
tory pair (ξref, uref), if the dynamics of the tracking error e for a closed control
system A with g (Equation 4) can be rewritten as d

dte(t) = fe(e), where fe(0) = 0.
A continuously differentiable function V : Rn → R satisfying (i) V (0) = 0,
(ii) ∀e ∈ Rn, V (e) ≥ 0, and (iii) ∀e ∈ Rn, ∂V∂e fe(e) ≤ 0, is called a Lyapunov
function for the tracking error.

Example 2. For the car of Example 1, with a continuous reference trajectory
ξref(t) = [xref(t), yref(t), θref(t)]

ᵀ, we define the tracking error in a coordinate
frame fixed to the car [16]:Ñ

ex(t)
ey(t)
eθ(t)

é
=

Ñ
cos(θ(t)) sin(θ(t)) 0
− sin(θ(t)) cos(θ(t)) 0

0 0 1

éÑ
xref(t)− px(t)
yref(t)− py(t)
θref(t)− θ(t)

é
. (5)

With the reference controller function g defined as:

v(t) = vref(t) cos(eθ(t)) + k1ex(t),
ω(t) = ωref(t) + vref(t)(k2ey(t) + k3 sin(eθ(t))),

(6)

it has been shown in [16] when k1, k2, k3 > 0, d
dtωref(t) = 0, and d

dtvref(t) = 0,

V ([ex, ey, eθ]
ᵀ) =

1

2
(e2
x + e2

y) +
1− cos(eθ)

k2
(7)

is a Lyapunov function with negative semi-definite time derivative ∂V
∂x fe =

−k1e
2
x −

vrefk3 sin2(eθ)

k2
.

4.2 Bounding tracking error using Lyapunov functions: Part 1

For a given closed control system, A with g, and fix a reference trajectory ξref

and a reference input uref, in this section, we will derive upper bounds on the
tracking error e. Later in Section 5, we will develop techniques that take the
tracking error into consideration for computing reference trajectories.

To begin with, we consider state-input reference trajectory pairs (ξref, uref)
where uref is continuous, and therefore, ξref and ξg are differentiable. Let us
assume that the tracking error dynamics (4) has a Lyapunov function V (e(t)).
The following is a standard result that follows from the theory of Lyapunov
functions for dynamical systems.

Lemma 1. Consider any state-input trajectory pair (ξref, uref), an initial state
x0, the corresponding trajectory ξg of the closed control system, and a constant
` > 0. If the tracking error e(t) has a Lyapunov function V , and if initially
V (e(0)) ≤ `, then for any t ∈ [0, ξref.ltime], V (e(t)) ≤ `.

This lemma is proved by showing that V (e(t)) = V (e(0))+
∫ t

0
d
dtV (e(τ))dτ ≤

V (e(0)). The last inequality holds since d
dtV (e(τ)) ≤ 0 for any τ ∈ [0, t] according

the definition of Lyapunov functions (Definition 4).
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Lemma 1 says that if we can bound V (e(0)) = V (e(x0, ξref(0))), we can bound
V (e(ξg(t), ξref(t))) at any time t within the domain of the trajectories, regardless
of the value of ξref(t). This could decouple the problem of designing the tracking
controller g and synthesizing the state-input trajectory pair (ξref, uref).

Example 3. Given two waypoints p0, p1 for the car in Example 1, take the re-
turned value of Waypoints to Traj({p0, p1}, v̄), move vref to uref and drop aref.
Then, the resulting (ξref, uref) is a continuous and differentiable state-input ref-
erence trajectory pair. Moreover, if the robot is controlled by the tracking con-

troller as in Equation (6), V (e(t)) = 1
2 (ex(t)2+ey(t)2)+ 1−cos(eθ(t))

k2
is a Lyapunov

function for the corresponding tracking error e(t) = [ex(t), ey(t), eθ(t)]
ᵀ.

From Equation (5), it is easy to check that e2
x(t) + ey(t)2 = (xref(t) −

px(t))2 + (yref(t) − py(t))2 for any time t. Assume that initially the position
of the vehicle satisfies [px(0), py(0)]ᵀ ∈ B`([xref(0), yref(0)]ᵀ). We check that

V (e(0)) = 1
2 (ex(0)2 + ey(0)2) + 1−cos(eθ(0))

k2
≤ `2

2 + 2
k2
.

From Lemma 1, we know that ∀t ∈ [0, ξref.ltime], V (e(t)) ≤ `2

2 + 2
k2
. Then we

have (xref(t)−px(t))2 +(yref(t)−py(t))2 = (ex(t)2 +ey(t)2) ≤ `2 + 4
k2

. That is, the
position of the robot at time t satisfies [px(t), py(t)]ᵀ ∈ B»

`2+ 4
k2

([xref(t), yref(t)]
ᵀ).

4.3 Bounding tracking error using Lyapunov functions: Part 2

Next, let us consider the case where ξref is discontinuous. Furthermore, let us
assume that it is a concatenation of several continuous state trajectories ξref,1 _
· · ·_ ξref,k. In this case, we call ξref a piece-wise reference trajectory. If we have
a sequence of (ξref,i, uref,i), each is a valid state-input trajectory pair and the
corresponding error ei(t) has a Lyapunov function Vi(ei(t)), then we can use
Lemma 1 to bound the error of ei(t) if we know the value of ei(0). However,
the main challenge to glue these error bounds together is that e(t) would be
discontinuous with respect to the entire piece-wise ξref(t).

Without loss of generality, let us assume that the Lyapunov functions Vi(ei(t))
share the same format. That is, ∀i, Vi(ei(t)) = V (ei(t)). Let ti be the time points
when ξref(t) (and therefore e(t)) is discontinuous. We know that limt→t−i

V (e(t)) 6=
limt→t+i

V (e(t)) since limt→t−i
e(t) 6= limt→t+i

e(t).

One insight we can get from Example 3 is that although e(t) is discontinuous
at time tis, some of the variables influencing e(t) are continuous. For exam-
ple, ex(t) and ey(t) in Example 3, which represent the error of the positions,
are continuous since both the actual and reference positions of the vehicle are
continuous. If we can further bound the term in V (e(t)) that corresponds to
the other variables, we could analyze the error bound for the entire piece-wise
reference trajectory. With this in sight, let us write e(t) as [ep(t), er(t)], where
ep(t) = e(t)dp is the projection to W and er(t) is the remaining components.

Let us further assume that the Lyapunov function can be written in the
form of V (e(t)) = α(ep(t)) +β(er(t)). Indeed, Example 2 and Appendix A show
that all four vehicle models (car, robot, underwater vehicle, and hovercraft) have
Lyapunov functions for the tracking error e(t) of this form. If β(er(t)) can be
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further bounded, then the tracking error for the entire trajectory can be bounded
using the following lemma.

Lemma 2. Consider ξref = ξref,1 _ · · · _ ξref,k, and uref = uref,1 _ · · · _ uref,k
as a piecewise reference and input with each (ξref,i, uref,i) being a state-input
trajectory pair. Suppose (1) V (e(t)) = α(ep(t))+β(er(t)) be a Lyapunov function
for the tracking error e(t); (2) ep(t) is continuous and α(·) is a continuous
function; (3) β(er(t)) ∈ [bl, bu], and (4) V (e(0)) ≤ ε0. Then, the tracking error
e(t) with respect to ξref and uref can be bounded by,

V (e(t)) ≤ εi,∀i ≥ 1,∀t ∈ [ti−1, ti),

where ∀ i > 1, εi = εi−1− bl + bu, ε1 = ε0 being the bound on the initial tracking
error, and ti’s are the time points of concatenation4.

Proof. We prove this by induction on i. When i = 1, we know from Lemma 1 that
if the initial tracking error is bounded by V (e(0)), then for any t ∈ [0, t1), V (e(t)) ≤
V (e(0)) ≤ `0 = `1, so the lemma holds.

Fix any i ≥ 1. If V (e(ti−1)) ≤ εi, from Lemma 1 we have ∀t ∈ [ti−1, ti),
V (e(t)) ≤ εi. Also, limt→t−i

V (e(t)) = limt→t−i
α(ep(t)) + β(er(t)) ≤ εi. Since

∀er(t) ∈ Rn−d, β(er(t)) ∈ [bl, bu], we have limt→t−i
α(ep(t)) ≤ εi − bl, and

limt→t−i
α(ep(t)) = limt→t+i

α(ep(t)). Therefore,

εi+1 = lim
t→t+i

V (e(t)) = lim
t→t+i

α(ep(t)) + β(er(t)) ≤ εi − bl + bu.

Another observation we have on the four vehicle models used in this paper
(in Example 2 and Appendix A) is that not only V (e(t)) can be written as
α(ep(t))+β(er(t)) with β(er(t)) being bounded, but also α(ep(t)) can be written
as α(ep(t)) = ceᵀp(t)ep(t) = c‖p(t) − pref(t)‖22, where c ∈ R is a scalar constant;
p(t) = ξg(t)dp and pref(t) = ξref(t)dp are the actual position and reference position
of the vehicle. In this case, we can further bound the position of the vehicle p(t).

Lemma 3. In addition to the assumptions of Lemma 2, if α(ep(t)) = ceᵀp(t)ep(t) =
c‖p(t) − pref(t)‖22, where c ∈ R, p(t) = ξg(t)dp and pref(t) = ξref(t)dp. Then we
have that at time t ∈ [ti−1, ti),

eᵀp(t)ep(t) ≤
εi − bl
c

,

where εi and bl are from Lemma 2, which implies that

p(t) ∈ B`i(pref(t)),with `i =

…
εi − bl
c

.

Note that Lemma 2 and 3 does not depend on the concrete values of ξref and
uref. The lemmas hold for any piece-wise reference trajectory ξref and reference
input uref as long as the corresponding error e has a Lyapunov function (for each
piece of ξref and uref).

Example 4. Continue Example 3.

4 ∀t ∈ [ti−1, ti), ξref(t) = ξref,i(t−
∑i−1
j=1 ξref,j .ltime).
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Fig. 2: Illustration of the error bounds

computed from Lemma 3. The ith line

segment is bloated by
»
`2 + 4i

k2
. The

closed-loop system’s trajectory p(t) are
purple curves and they are contained by
the bloated-tube.

Now let us consider the case of a se-
quence of waypoints {pi}ki=0. Let (ξref, uref) =
Waypoints to Traj({pi}ki=0, v̄) using Algo-
rithm 1. From Example 3, we know that

V (e(t)) = 1
2 (ex(t)2 + ey(t)2) + 1−cos(eθ(t))

k2
is

a Lyapunov function for each of the segment
of the piece-wise reference trajectory ξref(t).
We also know that for any value of eθ, the

term 1−cos(eθ(t))
k2

∈ [0, 2
k ]. From Lemma 2, we

have that for t ∈ [ti−1, ti) where ti are the
concatenation time points, we have V (e(t)) ≤
V (e(0)) + 2(i−1)

k2
Therefore, following Exam-

ple 3, initially V (e(0)) ≤ `2

2 + 2
k2

. Then

∀t ∈ [ti−1, ti), V (e(t)) ≤ `2

2 + 2i
k2

, and the
position of the robot satisfies [px(t), py(t)]ᵀ ∈
B»

`2+ 4i
k2

([xref(t), yref(t)]
ᵀ).

As seen in Figure 2, we bloat the black reference trajectory pref(t) = ξref(t)dp
by `i =

»
`2 + 4i

k2
for the ith line segment, the bloated tube contains the real

position trajectories (purple curves) p(t) of the closed system.

5 Synthesizing the reference trajectories

In Section 4.3, we have seen that under certain conditions, the tracking error
e(t) between an actual closed-loop trajectory ξg(t) and a piece-wise reference
ξref(t) can be bounded by a piece-wise constant value, which depends on the
initial tracking error e(0) and the number of segments in ξref. We have also seen
an example nonlinear vehicle model with piece-wise linear ξref for which the
tracking error can be bounded.

In this section, we discuss how to utilize such bound on e(t) to help find a
reference trajectory ξref(t) such that closed-loop trajectories ξg(t) from a neigh-
borhood of ξref(0) that are trying to follow ξref(t) are guaranteed to satisfy the
reach-avoid requirement. The idea of finding such a ξref follows a classic ap-
proach in robot motion planning. The intuition is that if we know at any time
t ∈ [0, ξref.ltime], ‖ξg(t)dp−ξref(t)dp‖2 will be at most `, then instead of requiring
ξref(t)dp to be at least ` away from the obstacles (inside the goal region), we
will bloat the obstacles (shrink the goal set) by `. Then the original problem is
reduced to finding a ξref(t) such that ξref(t)dp can avoid the bloated obstacles
and reach the shrunk goal set.

5.1 Use piece-wise linear reference trajectories for vehicle models

Finding a reference trajectory ξref(t) such that (a) ξref(t) satisfies the reach-avoid
conditions, and (b) ξref(t) and uref(t) are concatenations of state-input trajectory
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pairs {(ξref,i, uref,i)}i and each pair satisfies the system dynamics, is a nontriv-
ial problem. If we were to encode the problem directly as a satisfiability or an
optimization problem, the solver would have to search for over the space of con-
tinuous functions constrained by the above requirements, including the nonlinear
differential constraints imposed by f . The standard tactic is to fix a reasonable
template for ξref(t), uref(t) and search for instantiations of this template.

From Example 4, we see that if ξref is a piece-wise linear reference trajec-
tory constructed from waypoints in the workspace, the tracking error can be
bounded using Lemma 2. A piece-wise linear reference trajectories connecting
the waypoints in the workspace have the flexibility to satisfy the reach-avoid
requirement. Therefore, in this section, we fix ξref and uref to be the reference
trajectory and reference input returned by the Waypoints to Traj(·, ·). In Sec-
tion 5.2, we will see that the problem of finding such piece-wise linear ξref(t) can
be reduced to a satisfiability problem over quantifier-free linear real arithmetic,
which can be solved effectively by off-the-shelf SMT solvers (see Section 6 for
empirical results).

5.2 Synthesizing waypoints for a linear reference trajectory

Algorithm 1 says that ξref(t) and uref(t) can be uniquely constructed given a
sequence of waypoints {pi}ki=0 in the workspace W and a constant velocity v̄.
From Proposition 1, pref(t) = ξref(t)dp connects the waypoints in W. Also, let

ti =
∑i
j=1‖pj − pj−1‖2/v̄, ∀t ∈ [ti−1, ti), p(t) is the line segment connecting

pi−1 and pi. We want to ensure that p(t) = ξg(t)dp satisfy the reach-avoid
requirements. From Lemma 3, for any t ∈ [ti−1, ti), we can bound ‖p(t)−pref(t)‖2
with the constant `i, then the remaining problem is to ensure that, pref(t) is at
least `i away from the obstacles and pref(ξref.ltime) is inside the goal set with `k
distance to any surface of the goal set.

Let us start with one segment p(t) with t ∈ [ti−1, ti). To enforce that p(t)
is `i away from a polytope obstacle, a sufficient condition is to enforce both
the endpoints of the line segment to lie out at least one surface of the polytope
bloated by `i.

Lemma 4. If pref(t) with t ∈ [ti−1, ti) is a line segment connecting pi−1 and pi
in W. Given a polytope obstacle O = Poly(HO, bO) and `i > 0, if

dP(HO)∨
s=1

Ä
(H

(s)
O pi−1 > b

(s)
O + ‖H(s)

O ‖2`i) ∧ (H
(s)
O pi > b

(s)
O + ‖H(s)

O ‖2`i)
ä

= True,

then ∀t ∈ [ti−1, ti), B`i(pref(t)) ∩O = ∅.

Proof. Fix any s such that (H
(s)
O pi−1 > b

(s)
O + ‖H(s)

O ‖2`i) ∧ (H
(s)
O pi > b

(s)
O +

‖H(s)
O ‖2`i) holds. The set S = {q ∈ Rd | H(s)

O q > b
(s)
O + ‖H(s)

O ‖2`i} defines a
convex half space. Therefore, if pi−1 ∈ S and pi ∈ S, then any point on the
line segment connecting pi−1 and pi is in S. Therefore, for any t ∈ [ti−1, ti),

H
(s)
O pref(t) > b

(s)
O + ‖H(s)

O ‖2`i > b
(s)
O , which means pref(t) /∈ O.
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The distance between pref(t) and the surface H
(s)
O q = b

(s)
O is

|H(s)
O pref(t)−b

(s)
O |

‖H(s)
O ‖2

>

`i. Therefore, for any p ∈ B`i(pref(t)) we have ‖p− pref(t)‖2≤ `i and thus p /∈ O.

Furthermore,
∧dP(HO)
s=1 H

(s)
O q ≤ b(s)O +‖H(s)

O ‖2`i defines of a new polytope that
we get by bloating Poly(HO, bO) with `i. Basically, it is constructed by moving
each surface of Poly(HO, bO) along the surface’s normal vector with the direction
pointing outside the polytope.

Similarly, we can define the condition when pref(ξltime) = pk is inside the goal
shrunk by `k.

Lemma 5. Given a polytope goal set G = Poly(HG, bG) and `k > 0, if

dP(HG)∧
s=1

Ä
H

(s)
G pk ≤ b(s)O − ‖H(s)

G ‖2`k
ä

= True, then B`k(pk) ⊆ G.

Putting them all together, we want to solve the following satisfiability prob-
lem to ensure that each line segment between pi−1 and pi is at least `i away
from all the obstacles and pk is inside the goal set G with at least distance `k to
the surfaces of G. In this way, ξg(t) starting from a neighborhood of ξref(0) can
satisfy the reach-avoid requirement.

φwaypoints(pref(0), k,O, G, {`i}ki=1) = ∃p0, · · · , pk,

p0 == pref(0)
dP(HG)∧
s=1

Ä
H

(s)
G pk ≤ b(s)O − ‖H

(s)
G ‖2`k

ä
k∧
i=1

Ç ∧
Poly(H,b)∈O

Ç
dP(H)∨
s=1

Ä
H(s)pi−1 > b(s) + `i‖H(s)‖2∧H(s)pi > b(s) + `i‖H(s)‖2

äåå
Notice that the constraints in φwaypoints are all linear over real arithmetic. More-

over, the number of constraints in φwaypoints isO

Ç ∑
Poly(H,b)∈O

kdP(H) + dP(HG)

å
.

That is, fix k, the number of constraints will grow linearly with the total number
of surfaces in the obstacle and goal set polytopes. Fix O and G, the number of
constraints will grow linear with the number of line segments k.

Theorem 1. Fix k ≥ 1 as the number of line segments, pref(0) ∈ W as the
initial position of the reference trajectory. Assume that

(1) A closed with g is such that given any sequence of k+1 waypoints in W and
any v̄, the piece-wise reference ξref (and input uref) returned by Algorithm 1
satisfy the conditions in Lemmas 2 and 3 with Lyapunov function V (e(t))
for the tracking error e(t).

(2) For the above ξref, fix an ε0 such that V (e(0)) ≤ ε0, let {`i}ki=1 be error
bounds for positions constructed using Lemma 2 and Lemma 3 from ε0.

(3) φwaypoints(pref(0), k,O, G, {`i}ki=1) is satisfiable with waypoints {pi}ki=0.
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Let ξref(t), uref(t) = Waypoints to Trajectory ({pi}ki=0, v̄), and pref(t) = ξref(t)dp.
Let ξg(t) be a trajectory of A closed with g(·, ξref, uref) starting from ξg(0) with
V (e(ξg(0), ξref(0))) ≤ ε0, then ξg(t) satisfies the reach-avoid requirement.

Proof. Since ξref(t), uref(t) are a piece-wise linear reference trajectory and a refer-
ence input respectively constructed from the waypoints {pi}ki=0, they satisfy As-
sumption (1). Moreover, V (e(ξg(0), ξref(0))) ≤ ε0 satisfies Assumption (2). Using
Lemma 2 and Lemma 3, we know that for t ∈ [ti−1, ti), ‖ξg(t)dp−ξref(t)dp‖2≤ `i.

Finally, since {pi}ki=0 satisfy the constraints in φwaypoints, using Lemma 4 and
Lemma 5, we know that for any time t ∈ [0, tk], ξg(t)dp /∈ O and ξg(tk) ∈ G.
Therefore the theorem holds.

5.3 Partitioning the initial set

Starting from the entire initial set Θ, fix ξref(0) ∈ Θ and an ε0 such that ∀x ∈
Θ, V (e(x, ξref(0))) ≤ ε0, then we can use Lemma 2 and Lemma 3 to construct
the error bounds {`i}ki=1 for positions, and next use {`i}ki=1 to solve φwaypoints

and find the waypoints and construct the reference trajectory.
However, if the initial set Θ is too large, {`i}ki=1 could be too conservative

so φwaypoints is not satisfiable. In the first two figure on the top row of Figure 3,
we could see that if we bloat the obstacle polytopes using the largest `i, then
no reference trajectory is feasible. In this case, we partition the initial set Θ to
several smaller covers Θj and repeat the above steps from each smaller cover Θj .
In Lemma 2 and Lemma 3 we could see that the values of {`i}ki=1 decrease if ε0

decreases. Therefore, with the partition of Θ, we could possibly find a reference
trajectory more and more easily. As shown in Figure 3 bottom row, after several
partitions, a reference trajectory for each Θj could be found.

Fig. 3: Top row: each step attempting to find a reference trajectory in the space where obstacles
(goal set) are bloated (shrunk) by the error bounds {`i}i. From left to right: Without partition, {`i}i
are too large so a reference trajectory cannot be found. Θ is partitioned, but {`i}s for the left-top
cover are still too large. With further partions, a reference trajectory could be found. Bottom row: It
is shown that the bloated tubes for each cover (which contain all other trajectories from that cover)
can fit between the original obstacles.
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5.4 Overall synthesis algorithm

Taking partition into the overall algorithm, we have Algorithm 2 to solve the con-
troller synthesis problem defined in Section 2.2. Algorithm 2 takes in as inputs
(1) an (n,m)-dimensional control system A, (2) a tracking controller g, (3) Ob-
stacles O, (4) a goal set G, (5) a Lyapunov function V (e(t)) for the tracking
error e that satisfies the conditions in Lemma 2 and Lemma 3 for any piece-wise
linear reference trajectory and input, (6) the maximum number of line segments
allowed Segmax, (7) the maximum number of partitions allowed Partmax, and
(8) a constant velocity v̄. The algorithm returns a set RefTrajs, such that for
each triple 〈Θj , ξj,ref, uj,ref〉 ∈ RefTrajs, we have ∀x0 ∈ Θj , the unique trajectory
ξg of the closed system (A closed with g(·, ξj,ref, uj,ref)) starting from x0 satisfies
the reach-avoid requirement.

Algorithm 2: Controller synthesis algorithm
input : A = 〈X ,Θ,U, f〉, g,O, G, V (e(t)), Segmax,Partmax, v̄
initially: Cover← {Θ}, prt← 0, k ← 1, RefTrajs← ∅

1 while (Cover 6= ∅) ∧ (prt ≤ Partmax) do
2 for Θ ∈ Cover do
3 ξinit ← Center(Θ) ;
4 ε0 ← a such that ∀x ∈ Θ, V (L(x, ξinit)) ≤ a ;

5 {`i}ki=1 ← GetBounds(V (e(t)), ε0) ;
6 while k ≤ Segmax do

7 if CheckSAT(ξinitdp, k,O, G, {`i}ki=1)) == SAT then
8 p0, · · · , pk ← GetValue(φwaypoints) ;

9 ξref, uref ← Waypoints to Traj({pi}ki=0, v̄) ;
10 RefTrajs← RefTrajs ∪ 〈Θ, ξref, uref〉 ;
11 Cover← Cover \ {Θ};
12 k ← 1 ;
13 Break ;

14 else
15 k ← k + 1

16 if k > Segmax then
17 Cover← Cover ∪ Partition(Θ) \ {Θ} ;
18 prt← prt+ 1;
19 k ← 1 ;

20 return RefTrajs ;

In Algorithm 2, Cover is the collection of covers in Θ that the corresponding
ξref and uref have not been discovered. Initially, Cover only contains Θ. The for-
loop from Line 2 will try to find a ξref and a uref for each Θ ∈ Cover until the
maximum allowed number for partitions is reached. At line 3, we fix the initial
state of ξref(0) = ξinit to be the center of the current cover Θ. Then at Line 4,
we get the initial error bounds ε0 after fixing ξinit. Using ε0 and the Lyapunov
function V (e), we can construct the error bounds {`i}ki=1 for the positions of the
vehicle using Lemma 2 and Lemma 3 at Line 5.

If the if condition at Line 7 holds with {pi}ki=0 being the waypoints that
satisfy φwaypoints, then from Theorem 1 we know that the ξref, uref constructed
using {pi}ki=0 at Line 9 will be such that, the unique trajectory ξg of the closed
system (A closed with g(·, ξref, uref)) starting from x0 ∈ Θ satisfies the reach-avoid
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requirement. Otherwise the algorithm will increase the number of segments k in
the piece-wise linear reference trajectory (Line 15). When the maximum number
of line segments allowed is reached but the algorithm still could not find ξref, uref

that can guarantee the satisfaction of reach-void requirement from the current
cover Θ, we will partition the current Θ at Line 17 and add those partitions to
Cover. At the same time, k will be reset to 1.

Theorem 2 (Soundness). Suppose the inputs to Algorithm 2, A, g,O, G, V (e(t)), v̄
satisfy the conditions of Theorem 1. Let the output RefTrajs = {〈Θj , ξj,ref, uj,ref〉}j,
then we have (1). Θ ⊆ ∪Θj (2). for each triple 〈Θj , ξj,ref, uj,ref〉, we have ∀x0 ∈
Θj, the unique trajectory ξg of the closed system (A closed with g(·, ξj,ref, uj,ref))
starting from x0 satisfies the reach-avoid requirement.

The theorem follows directly from the proof of Theorem 1.

6 Implementation and evaluation

We have implemented our synthesis algorithm (Algorithm 2) in a prototype open
source tool we call FACTEST 5 (FAst ConTrollEr SynThesis framework). Our
implementation uses Pypoman6, Yices 2.2 [7], SciPy7 and NumPy8 libraries.
The inputs to FACTEST are the same as the inputs in Algorithm 2. FACTEST
terminates in two ways. Either it finds a reference trajectory ξj,ref and reference
input uj,ref for every partition Θj of Θ so that Theorem 2 guarantees they solved
the controller synthesis problem. Otherwise, it terminates by failing to find ref-
erence trajectories for at least one subset of Θ after partitioning Θ up to the
maximum specified depth.

6.1 Benchmark scenarios: vehicle models and workspaces

We will report on evaluating FACTEST in several 2D and 3D scenarios drawn
from motion planning literature (see Figures 4). Recall, the state space X dimen-
sion corresponds to the vehicle model, and is separate from the dimensionality
of the workspace W. We will use four nonlinear vehicle models in these different
scenarios: (a) the kinematic vehicle model (car) [33] introduced in Example 1,
(b) a bijective mobile robot (robot) [16], (c) a hovering robot (hovercraft), and
(d) an autonomous underwater vehicle (AUV) [31]. The dynamics and tracking
controllers (g) of the other three models are described in the Appendix A. Each
of these controllers come with a Lyapunov function that meets the assumptions
of Lemmas 2 and 3 so the tracking error bounds given by the lemmas {`}ki=1 can
be computed.

5 FACTEST will be made available after the anonymous review period is over.
6 https://pypi.org/project/pypoman/
7 https://www.scipy.org/
8 https://numpy.org/

https://pypi.org/project/pypoman/
https://www.scipy.org/
https://numpy.org/
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(a) Zigzag [34] (b) Maze [34] (c) SCOTS [39] (d) Barrier

(e) Simple Env (f) Difficult Env (g) L-tunnel [34] (h) Z-tunnel [34]

Fig. 4: 2D and 3D workspaces with initial (blue) and goal (green) sets.

6.2 Synthesis performance

Table 1 presents the performance of FACTEST on several synthesis problems.
Several points are worth highlighting. (a) The absolute running time is at the
sub-second range, even for 6-dimensional vehicle models with 4-inputs, operating
in a 3D workspace. This is encouraging for online motion-control applications
with dynamic obstacles. (b) The running time is not too sensitive to dimensions
of X and U because the waypoints are only being generated in the lower dimen-
sional workspace W. Additionally, the construction of ξref from the waypoints
does not add significant time. However, since different models have different
dynamics and Lypunov functions, they would have different error bounds for
position. Such different bound could influence the final result. For example, the
result for the Barrier scenario differs between the car and the robot. The car
required 25 partitions to find a solution over all of Θ and the robot required 22.
(c) Confirming what we have seen in Section 5.2, the runtime of the algorithm
scales with the number of segments required to solve the scenario and the num-
ber of obstacles. (d) As expected and seen in Zigzag scenarios, all other things
being the same, the running time and the number of partitions grow with larger
initial set uncertainty.

For each scenario, we plot the final results (reference trajectory, trajectories
of closed-loop systems) and put them in Appendix B.
Comparison with other motion controller synthesis tools: A challenge.

Few controller synthesis tools for nonlinear models are available for direct
comparisons. We had detailed discussions with the authors of FastTrack [14],
but found it difficult to plug-in new vehicle models. RTD [46] is implemented
in MatLab also for specific vehicle models. Pessoa [29] and SCOTS [39] are im-
plemented as general purpose tools. However, they are based on construction of
discrete abstractions, which requires several additional user inputs. Therefore,
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Scenario n,m radius of Θ # O Time (s) # segments per ξref # partitions

Zigzag, car 1 3, 2 0.200 9 0.037 6.0 1.0

Zigzag, car 2 3, 2 0.400 9 0.212 4.0 6.0

Zigzag, car 3 3, 2 0.800 9 0.915 5.0 - 6.0 16.0

Zigzag, robot 1 4, 2 0.200 9 0.038 6.0 1.0

Zigzag, robot 2 4, 2 0.400 9 0.227 4.0 6.0

Zigzag, robot 3 4, 2 0.800 9 0.911 5.0 - 6.0 16.0

Barrier car 3, 2 0.707 6 0.697 2.0 - 4.0 25.0

Barrier, robot 4, 2 0.707 6 0.645 2.0 - 4.0 22.0

Maze, car 3, 2 0.200 22 0.174 8.0 1.0

Maze, robot 4, 2 0.200 22 0.180 8.0 1.0

SCOTS, car 3, 2 0.070 19 1.541 26.0 1.0

SCOTS, robot 4, 2 0.070 19 1.623 26.0 1.0

L-tunnel, hovercraft 4, 3 0.173 10 0.060 5.0 1.0

L-tunnel, AUV 6, 4 1.732 10 0.063 5.0 1.0

Z-tunnel, hovercraft 4, 3 0.173 5 0.029 4.0 1.0

Z-tunnel, AUV 6, 4 1.732 10 0.029 4.0 1.0

Table 1: Synthesis performance on different scenarios (environment, vehicle). Dimension of state
space X (n), input (m), radius of initial set Θ, number of obstacles O, running time (in seconds).

we were only able to compare FACTEST with SCOTS and Pessoa using the sce-
nario SCOTS. This scenario was originally built in SCOTS and is using the same
car model.

The results for SCOTS and Pessoa can be found in [39]. The total runtime
of SCOTS consists of the abstraction time tabs and the synthesis time tsyn. The
Pessoa tool has an abstraction time of tabs = 13509s and a synthesis time of
tsyn = 535s, which gives a total time of ttot = 14044s. The SCOTS tool has a has
an abstraction time of tabs = 100s and a synthesis time of tsyn = 413s, which
gives a total time of ttot = 513s. FACTEST clearly outperforms both SCOTS
and Pessoa with a total runtime of ttot = 1.541s. This could be attributed to
the fact that FACTEST does not have to perform any abstractions, but even by
looking sole at tsyn, FACTEST is significantly faster. However, we do note that
the inputs of FACTEST and SCOTS are different. For example, SCOTS needs
a growth bound function β for the dynamics but FACTEST requires Lyapunov
functions for the tracking error.

6.3 RRT vs. SAT-Plan

To demonstrate the speed of our SAT-based reference trajectory synthesis algo-
rithm (i.e. only the while-loop from Line 6 to Line 15 of Algorithm 2 which we
call SAT-Plan), we compare it with Rapidly-exploring Random Trees (RRT) [23].
The running time, number of line segments, and number of iterations needed to
find a path were compared. RRT was run using the Python Robotics library [40],
which is not necessarily an optimized implementation. SAT-Plan was run using
Yices 2.2. The scenarios are displayed in Figure 4 and the results are in Figure 5.
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Fig. 5: Comparison of RRT and SAT-Plan. The left plot shows the runtime and the
right plot shows the number of necessary iterations. Note that RRT timed out on the
SCOTS scenario.

Each planner was run 100 times. The colored bars represent the average
runtime and average number of iterations. The error bars represent the range of
minimum and maximum. The RRT path planner was given a maximum of 5000
iterations and a path resolution of 0.01. SAT-Plan was given a maximum of 100
line segments to find a path. RRT timed out for the SCOTS scenario, unable
to find a trajectory within 5000 iterations. The maze scenario timed out about
10% of the time.

Overall SAT-Plan scales in time much better as the size of the unsafe set
increases. Additionally, the maximum number of iterations that RRT had to
perform was far greater than the average number of line segments needed to
find a safe path. This means that the maximum number of iterations that RRT
must go through must be sufficiently large, or else a safe path will not be found
even if one exists. SAT-Plan does not have randomness and therefore will find a
reference trajectory (with k segments) in the modified space (bloated obstacles
and shrunk goal) if one (with k segments) exists. Various examples of solutions
found by RRT and SAT-Plan can be found in Appendix B.

7 Conclusion and discussion

We introduced a technique for synthesizing correct-by-construction controllers
for a nonlinear vehicle models, including ground, underwater, and aerial vehicles,
for reach-avoid requirements. Our tool FACTEST implementing this technique
shows very encouraging performance on various vehicle models in different 2D
and 3D scenarios.

There are several directions for future investigations. (1) One could explore a
broader class of reference trajectories to reduce the tracking error bounds. (2) It
would also be useful to extend the technique so the synthesized controller can
satisfy the actuation constraints automatically. (3) Currently we require user
to provide the tracking controller g with the Lyapunov functions, it would be
interesting to further automate this step.
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A System models for testing

A.1 Lyapunov controller for a bijective mobile robot

The bijective mobile robot is one of the models used in testing the 2D scenarios.
The kinematics for a mobile robot are given by

q̇ =

ẋẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 ïv
ω

ò
. (8)

The model can be made bijective by using the states s = sin θ and c = cos θ in
place of θ. The kinematic equation becomes

q̇ =


ẋ
ẏ
ṡ
ċ

 =


c 0
s 0
0 c
0 s

 ïvωò . (9)

When a reference trajectory is introduced, the error states are given by

ex = c(xref − x) + s(yref − y)

ey = −s(xref − x) + c(yref − y)

es = sin (θref − θ) = srefc− crefs

ec = cos (θref − θ) = crefc+ srs− 1.

(10)

From [5], the following Lyapunov function is proposed:

V =
k

2
(e2
x + e2

y) +
1

2(1 + ec
a )

(e2
s + e2

c) (11)

with k > 0 and a > 2 are constants. The range of ec is [−2, 0] and therefore
0 < a−2

a ≤ 1 + ec
a ≤ q and 1 ≤ 1

1+ ec
a
≤ a

a−2 . The Lyapunov function in 11 has

the derivative

V̇ = −kexvb + es

Ç
kvrey −

wb
(1 + ec

a )2

å
(12)

which is negative semi-definite with the control law

vb = kxex

wb = kvrey(1 +
ec
a

)2 + kses

ï(
1 +

ec
a

)2
òn
.

(13)

It can be checked that e2
s + e2

c = −2ec ∈ [0, 4]. The term 1
2(1+ ec

a )
(e2
s + e2

c) in V

can also be bounded with 1
2(1+ ec

a )
(e2
s + e2

c) ∈ [2, 2a
a−2 ].



Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models 25

A.2 Lyapunov-based controller for an autonomous underwater
vehicle

The autonomous underwater vehicle is one of the models used for testing the 3D

scenarios. The position of the AUV is x =
[
x y z

]>
, and the Euler angles (roll,

pitch, and yaw respectively) are θ =
[
φ θ ψ

]>
. The equations of motion for the

position and Euler angles are given byẋẏ
ż

 =

cosψ cos θ
sinψ cos θ

sin θ

 v (14)

φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

ωxωy
ωz

 . (15)

The angular acceleration ω =
[
ωx ωy ωz

]>
is given in the local frame. By com-

bining the equations of motion for the position and Euler angles, the total kine-
matis are given by ï

ẋ

θ̇

ò
=

ï
b1 03×3

01×3 B2

ò ï
u1

u2

ò
(16)

where the m× n zero matrix is denoted by 0m×n and

b1 =

cosψ cos θ
sinψ cos θ
− sin θ


B2 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

. (17)

The error is defined as

xe = R>(xref − x) (18)

θe = θref − θ (19)

where R is the rotation matrix

R =

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

 . (20)

Note that cθ and sθ denote cos θ and sin θ respectively.
Consider the Lyapunov function proposed in [31].

V =
1

2
xe
>xe + k>f(θe) (21)
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where k =
[
k1 k2 k3

]>
is the controller gains vector and f(θe) =

[
1− cosφe 1− cos θe 1− cosψe

]>
is a vector-valued function. The time derivative of 21 is

V̇ = xe
>ẋe + k>

df

dθe
θ̇e. (22)

The error dynamics are given as

ẋe = b1eu1d −R>b1u1 − ω × xe

θ̇e = θ̇ref − θ̇ = B2refu2d−B2u2.
(23)

When 23 is substituted into 22, it becomes

(24)V̇ = pe
>{q + (B2ref −B2)u2ref −B2u2ref}

+ xe{vref(cosψe cos θe − 1)− vb}

The feedback control law is chosen to be

u1 = vref + vb

u2 = u2ref + u2b

(25)

where the subscript b denotes the feedback terms. The feedback terms are chosen
to be

vb = vref(cosψe cos θe − 1) + γ2xe

u2b = B2
−1{q + (B2ref −B2)u2ref + pe}

(26)

where γ is a chosen constant, xe is the error in the local x position, q =[
0 −zevref/k2 yevref cos θe/k3

]>
, and pe =

[
k1 sinφe k2 sin θe k3 sinψe

]>
. When

the inputs are substituted into 24, the time derivative becomes

V̇ = p>e pe − γ2x2
e (27)

which is negative semi-definite. We could also see that term k>f(θe) ∈ [0, 2(k1 +
k2 + k3)] for any θe.

A.3 Lyapunov controller for a hovering kinematic car

The hovering kinematic car is one of the models used in testing the 3D scenarios.
The x, y, and θ states are the same as the kinematic car. A fourth state z is
added to allow the car to hover. The kinematics for the hovering kinematic car
are given by

q̇ =


ẋ
ẏ
ż

θ̇

 =


cos θ 0 0
sin θ 0 0

0 1 0
0 0 1


 vvz
ω

 (28)
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where v is the velocity in the xy-plane, vz is the velocity along the z-axis, and ω
is the rate of turning. When a reference trajectory is introduced, the error states
are given by

ex = cos θ(xr − x) + sin θ(yr − y)

ey = − sin θ(xr − x) + cos θ(yr − y)

ez = zr − z
eθ = θr − θ.

(29)

The following Lyapunov function is proposed:

V =
1

2
(x2
e + y2

e + z2
e) +

(1− cos θe)

k2
(30)

with the time derivative

V̇ = −k1x
2
e − k4z

2
e −

vrefk3 sin2 θe
k2

. (31)

This time derivative is negative semi-definite when k1, k2, k3, k4 > 0 and the
control law is given by:

v = vref cos θe + k1xe

ω = ωref + vref(k2ye + k3 sin θe)

vz = vz,ref + k4ze

(32)

We can also see that the term (1−cos θe)
k2

∈ [0, 2
k2

] for any θe.

B Example solutions to various scenarios

In this appendix there are some example solutions to the various scenarios found
in this paper.

The comparison of RRT to SAT-Plan was run without bloating the polytopes
to see if a solution could be found. It should be noted that the RRT algorithm
used was a very basic algorithm from [40]. The paths for RRT could be optimized
if a different algorithm such as RRT* was used; however, this would increase the
running time of the algorithm.

Below are some example solutions to the reach-avoid scenarios. The scenarios
run in the two-dimensional W use the car model. The scenarios run in the three
dimensional W use the hovercraft model. The black lines denote ξref and the
dotted violet lines denote ξg.
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(a) Simple Env (b) Difficult Env (c) Zigzag

(d) Maze (e) Barrier (f) SCOTS scenario

Fig. 6: Example solutions using RRT vs. SAT-Plan. The top figures show the RRT solution and the
bottom figures show the SAT-Plan solution. Note that RRT timed out in the SCOTS scenario.
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(a) Simple Env (b) Difficult Env (c) Zigzag

(d) Maze (e) Barrier (f) SCOTS scenario

(g) L-tunnel (h) Z-tunnel

Fig. 7: Example solutions to the scenarios using FACTEST. The initial set is seen in blue, the goal
set is seen in green, and the obstacle set is shown in red.
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