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Abstract— We present an algorithm for synthesizing con-
trollers for nonlinear systems and reach-avoid requirements.
The synthesized controllers consist of a reference trajectory
and a tracking controller which drives the system’s state
towards the reference. Our key idea is to use a locally optimal
reachability analysis algorithm to compute tracking error
bounds relative to arbitrary, and possibly piece-wise continuous,
reference trajectories. The overall synthesis algorithm uses
these these error bounds to search for reference trajectories of
increasing length, that work for increasingly smaller parts of the
starting set. We also give a MILP-based subroutine for finding
reference trajectories, given the tracking error characterization.
The size of this problem grows at most linearly with the
shapes of the obstacles and goals. The overall algorithm comes
with soundness guarantees. Our experimental results with a
prototype implementation of a tool show that it can solve
the synthesis problem for simple nonlinear vehicle models in
interesting scenarios, with sub-second level running time, and
that it fails gracefully in extreme cases.

I. INTRODUCTION

Controller synthesis algorithms generate correct-by-
construction controllers that guarantee that the system under
control meets some higher-level tasks. By reducing designing
and testing cycles, synthesis can help create safe autonomous
systems that involve complex interactions of dynamics and
decision logic. In general, however, synthesis problems are
known to have high computational complexity as they in-
volve solving two-player games.

Over the past decade, effective synthesis algorithms have
been created by restricting the nature of the high-level task
specifications, for example, to the so called class of gen-
eralized reactivity specifications [18], [31], [19], [11], [28],
[2]. A preeminent solution approach is based on discrete
abstractions [33], [12], [22], [17], [40], [17], [39], [34]:
First, a discrete over-approximation of the control system
is computed, and then a discrete controller or an automaton
is synthesized by solving a two-player game [26]. Several
algorithms employed this approach, first for linear and more
recently to nonlinear models, and they are implemented in
tools like CoSyMA [24], Pessoa [30], LTLMop [38], [19],
Tulip [40], [11], and SCOTS [31]. Despite the advances, an
enduring challenge here is the discrete abstraction step which
leads to a severe state space explosion for nonlinear systems,
even with 3-4 continuous dimensions.

An alternative attack on the problem has gained some
traction recently as it can handle nonlinear models and
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shows promise for scalability. This approach decomposes
the synthesis problem into two subtasks: (a) first a tracking
controller (gt) is designed to drive the plant to arbitrary
waypoints; and (b) given the tracking error performance
of gt, sequences of waypoints are synthesized to meet the
higher-level goals. Step (a) requires domain knowledge, and
for typical vehicles and manipulators there are well-known
controllers that can be tuned and used out of the box.
Therefore, the problem boils down to characterizing the
tracking errors and using that for solving (b). Within this
broad solution space, a handful of specific algorithms have
been explored in detail. FastTrack [14] uses Hamilton-Jacobi-
based reachability analysis to produce the tracking error
bounds. Convex optimization is used for the same in [32].
Reachability-based trajectory design (RTD) [36] computes
forward reachable sets to guarantee not-at-fault in robotic
decision making. Similar ideas are used in [35], [21] to
define safe error bounds. Our previous work [8] proposed
a similar algorithm for linear models where the waypoints
were effectively computed using satisfiability (SAT)-solvers.
These methods have been applied to different vehicle models,
including for receding horizon real-time planning [14].

In this paper, we contribute a new algorithm in the
above theme. Our algorithm can handle nonlinear models
and reach-avoid goals or specifications. We use a locally
optimal reachability analysis algorithm [7] to compute the
tracking errors. We show that under reasonable assumptions,
a small number of such reachtube computations can be used
to characterize the tracking errors relative to arbitrary, and
possibly piece-wise continuous, reference trajectories defined
by the waypoints (Proposition 1). We give a novel procedure
(Proposition 3) for solving (b) with this tracking error
characterization using Mixed Integer Linear Programming
(MILP). Our overall synthesis algorithm (Algorithm 4) is
implemented in a software tool and it has the desirable
soundness properties1. The algorithm partitions only the set
of initial states of the system, increasingly finely, and looks
for reference trajectories with increasing number of way-
points, until it either finds solutions that provably meet the
reach-avoid specifications, or fails by hitting the partitioning
or waypoint thresholds.

We present experimental evaluation of the tool on a simple
nonlinear vehicle model in four different scenarios. The tool
can indeed take any other nonlinear vehicular models with
arbitrary state variables. Our experimental results show that
our tool can successfully find safe reference trajectories in

1The tool and the related full version of the paper is available to download
from this link.
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all scenarios with sub-second level running time when the
requirements are reasonable, and it fails predictably when
the algorithm parameters are too extreme.

Other related approaches: Model Predictive Control
(MPC) is another, very different, approach which has been
synthesizing controllers with reach-avoid type specifications.
Implicit MPC [23] relies on solving an optimal control
problem with explicit solutions [4], [37], [41] or with LP [4],
QP [3], [29], or MILP solvers [37], [27], [28]. Probabilistic
Road Maps (PRM) [16], Rapidly-exploring Random Trees
(RRT) [20], and variants [15] are widely used for generating
feasible trajectories but they only provide probabilistic guar-
antees. We defer a detailed comparisons to a longer version
of this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

For an n-dimensional vector x ∈ Rn, x(i) denotes the ith

entry. The Euclidian norm of x is denoted by ‖x‖. Bε(x)
∆
=

{y ∈ Rn | ‖y − x‖≤ ε} is the ε-ball, ε > 0, centered at x.
Given a matrix H ∈ Rn×m and a vector b ∈ Rn, an (H, b)-
polytope, denoted by Poly(H, b), is the set {x ∈ Rm|Hx ≤
b}. Each row of the polytope defines a halfspace H(i)x ≤
b(i). The faces of the polytope are defined by H(i)x = b(i).
The number of faces of the polytope (rows in H) is dP(H) =
n. The sum of x ∈ Rn and S ⊆ Rn, denoted by x ⊕ S, is
the set {x+ y | y ∈ S}.

Definition 1 An (n,m)-dimensional control system A is a
4-tuple 〈X ,Θ,U, f〉 where (i) X ⊆ Rn is the state space,
(ii) Θ ⊆ X is the initial set, (iii) U ⊆ Rm is the input space,
and (iv) f : X × U → X is the dynamic function that is
Lipschitz continuous with respect to the first argument.

Trajectories and reachtubes. An input trajectory u :
[0, T ] → U, is a continuous function, and we denote the
set of all input trajectories by U .

Given an input u ∈ U , time bound T ≥ 0, and an initial
state x0 ∈ Θ, a solution of A is a continuous trajectory
ξu : [0, T ] → X that satisfies (i) ξu(0) = x0 and (ii) for
any t ∈ [0, T ], the time derivative of ξu at t satisfies the
differential equation:

ξ̇u(t) = f(ξu(t), u(t)). (1)

For any x0 ∈ Θ, u ∈ U , ξu is a state trajectory and we call
such a pair (ξu, u) a state-input trajectory pair. The time
bound or duration of ξu is denoted by ξu.ltime = T .

Given a trajectory ξ : [0, T ] → X and a time t > 0, the
time shift of ξ is a function (ξ + t) : [t, t+ T ]→ X defined
as ∀, t′ ∈ [t, t+T ], (ξ+ t)(t′) = ξ(t′− t). Strictly speaking,
for t > 0, ξ + t is not a trajectory. The concatenation of
two trajectories ξ1 _ ξ2 is a new trajectory in which ξ1 is
followed by ξ2 shifted by ξ1.ltime. Many trajectories can be
concatenated in the same way.

A (state) reachtube is a data structure for representing
over-approximations of state trajectories. Specifically, in this
paper reachtubes are represented as sequences of time-
stamped convex sets and we require them to be suffix closed.

Definition 2 (Reachtube) Given a control system A =
〈X ,Θ,U, f〉, a subset S ⊆ Θ, and a time-bound T > 0,
an (S, T )-reachtube is a sequence of time-stamped sets
{(Ri, ti)}ki=0 such that
(1) t0 = 0 and tk = T , and each Ri ⊆ X is convex.
(2) ∀x0 ∈ S, u ∈ U , i ∈ {0, · · · , k}, the trajectory ξu(t) with

ξu(0) = x0, satisfies (i) ξu(ti) ∈ Ri; and (ii) if i < k
then ∀t ∈ [ti, ti+1], ξu(t) ∈ ConvexHull(Ri, Ri+1).

An (S, T )-reachtube {(Ri, ti)}ki=0 is said to be suffix closed
if ∀j ∈ {0, · · · , k−1}, the suffix {(Rj , tj), . . . , (Rk, tk)}, is
a (Rj , T − tj)-reachtube. For a closed control system (i.e.,
with no inputs), the definition for reachtube is the same as
above with U = ∅. If a closed system is globally asymptot-
ically stable, for example, and a reactube is represented by
appropriate sub-level sets of its Lyapunov function, then the
reachtube will be suffix closed. This property is used in the
design on the RecTrec procedure.

The reachtubes can be computed using any reachability
analysis tool, of which there are many [5], [9], [1]. For our
experiments we use the method proposed in [7] which is also
implemented in the C2E2 tool [10],[6].

Reach-avoid requirement in the workspace. The state
space of A is X ⊆ Rn, while its workspace is a subspace
W ⊆ Rd, with d = 2 or 3, which is the physical space in
which the robots have to avoid obstacles and reach goals.
Given a state vector x ∈ X , its projection to W is denoted
by x ↓ p. That is, x ↓ p is a point in R2 for ground vehicles
on the plane and a point in R3 for aerial and underwater
vehicles. The vector x may include other variables like
velocity, heading, pitch, etc., but x ↓ p only has the position
in Cartesian coordinates. We assume that the goal set G :=
Poly(HG, bG) and the unsafe set O (obstacles) are specified
by polytopes inW; O = ∪Oi, where Oi := Poly(HO,i, bO,i)
for each obstacle i.

The projection of a trajectory ξu : [0, T ] → X to W is
written as ξu ↓ p : [0, T ]→W and defined as (ξu ↓ p)(t) =
ξu(t) ↓ p. We say that a trajectory ξu(t) satisfies a reach-
avoid requirement given by unsafe set O and goal set G if
∀t ∈ [0, ξu.ltime], ξu(t) ↓ p /∈ O and ξu(ξu.ltime) ↓ p ∈ G.
See Figure 1 for an example of a reach avoid requirement.

Tracking and reference controllers. The controllers we
study in this paper combine a reference controller gr and a
tracking controller gt to meet reach-avoid specifications.

A reference state trajectory (or reference trajectory for
brevity) is a trajectory over X that the control system tries
to follow. We denote reference trajectories by ξref. Similarly,
a reference input trajectory (or reference input) is a trajectory
over U and we denote them as uref. A reference controller gr
for A is a state-input pair (ξref, uref). Note these ξref and uref
are not necessarily solutions of (1). Figure 1 shows reference
and actual solution trajectories.

Given a reference controller gr = (ξref, uref), a tracking
controller gt attempts to drive the trajectory of the closed-
loop system to follow ξref.

Definition 3 (Tracking controller) Given a reference con-
troller gr = (ξref, uref) for A, a tracking controller is a (state



Fig. 1: Example reach-avoid scenario. The obstacles are labeled
Oi, the initial set is labeled Θ, and the goal set is labeled G.
Various reference trajectories that solve the scenario are shown.
The waypoints of the reference trajectory are labeled pi and the
reference trajectories are the solid line. The dashed lines represents
an example of an actual trajectory ξg .

feedback) function gt : X × X ×U → U, i.e., at time t, it
takes in a current state of the system x, a reference trajectory
state ξref(t), and a reference input uref(t), and gives an input
gt(x, ξref(t), uref(t)) ∈ U for A.

Thus, for a reference trajectory ξref, a reference input uref,
a tracking controller gt, and an initial state x0 ∈ Θ, the
resulting trajectory ξg of the closed control system (A closed
with g) satisfies:

ξ̇g(t) = f (ξg(t), gt (ξg(t), ξref(t), uref(t))) ,∀ t ∈ [0, T ]\D,
(2)

where D is the set of points in time where the second or
third arguments of gt are discontinuous2. For a broad class
of nonlinear systems such as cars, drones, and underwater
vehicles, there are many available techniques for designing
tracking controllers to minimize the tracking error. Going
forward, we will assume that the tracking controller is given
and we will develop algorithms for automatically finding the
reference controllers. However, in order to find reference
trajectories (ξref) concretely, we will first characterize the
error tracking performance of gt relative to arbitrary ξref.

Definition 4 (Synthesis problem) Given a (n,m)-
dimensional nonlinear system A = 〈X ,Θ,U, f〉, goal
and unsafe sets G,O in the workspace W , and a tracking
controller gt, we are required to find a partition {Θj}j
of Θ, and a reference controller (ξj,ref, uj,ref) for each
partition, such that ∀x0 ∈ Θj , the unique trajectory ξg of
the closed system (A closed with gt and gr) starting from
x0 satisfies the reach-avoid requirement.

We emphasize that the synthesized reference controllers
(ξj,ref, uj,ref) can be arbitrary functions (not necessarily state-
input pairs), but, for each initial state x0 ∈ Θj , the closed
loop trajectory ξg following ξref has to be a valid state

2ξg is a standard solution of ODE with piece-wise continuous right hand
side.

trajectory with corresponding input u generated by gt and
gr.

In order to achieve this decomposition of the synthesis
problem, we will have to carefully characterize the nature of
the tracking error that the reference controller has to cope
with. The rest of this section gives the related definitions and
we finish with an example.

Tracking error dynamics. We will use a given tracking
controller (found using standard approaches) to automatically
synthesize reference controllers. We will study the tracking
error, namely the difference between the closed system
trajectory ξg(t) and any arbitrary reference trajectory ξref(t).
That is, at a fixed time t, the tracking error function e :
X ×X → Rn takes the values of the system trajectory ξg(t)
and the reference trajectory ξref(t) and returns a scalar value
that defines their difference: When ξg(·) and ξref(·) are fixed,
we write e(t) = e(ξg(t), ξref(t)) which makes it a function
of time.

One thing to remark here is that if ξref(t) is discontinuous,
then e(t) is also discontinuous. In this case, the derivative of
e(t) cannot be defined at the points of discontinuity.

Example 1 We will use the kinematic bicycle model as an
example. The state is (x, y, θ) and the inputs are (v, ω).

ẋ = v cos(θ); ẏ = v sin(θ); θ̇ = ω (3)

A standard tracking controller is given by:

v = vref cos(eθ) + k1ex; ω = ωref + vref(k2ey + k3 sin(eθ))
(4)

The error of the true state from the reference state is:

ex = (xref − x) cos(θ) + (yref − y) sin(θ)

ey = −(xref − x) sin(θ) + (yref − y) cos(θ); eθ = θref − θ

When written in matrix form, we see that the error is given
in the local frame of A. The derivative of the error can be
written as: ėx = ωey − v − vref cos(eθ); ėy = −ωex +
vref sin(eθ); ėθ = ωref − ω. Replacing v and ω with the
control law given of (4), the error dynamics are written as
a closed loop system:

ėx = (ωref + vref(k2ey + k3 sin(eθ)))ey − k1ex

ėy = −(ωref − vref(k2ey + k3 sin(eθ)))ex + vref sin(eθ)

ėθ = −vref(k2ey + k3 sin(eθ)). (5)

III. SYNTHESIS ALGORITHM

In this section, we present our synthesis algorithm and
the subroutines used therein. The main idea is that once the
tracking controller gt is fixed, the tracking error e between
an arbitrary reference trajectory ξref and the actual trajectory
ξg of the closed system can be bounded, independent from
the concrete value of the reference. Once we know the error
bound, say e, we can use that to bloat O and shrink G, and
then synthesize the actual ξref such that it is e away from
the obstacles (inside the goal set). This then ensures that
all trajectories following this ξref will meet the reach-avoid
specification.



Outline: In Section III-A, we show that the tracking er-
ror can be bounded using reachability analysis, independent
from ξref and uref by the RecTrec function. In Section III-
B, we present Waypt2Traj for constructing reference tra-
jectories from workspace waypoints. In Section III-D, we
introduce our tool to find such ξref by solving a mixed-integer
linear program (MILP). In Section III-C, we present the
overall synthesis algorithm, which uses RecTrec to construct
waypoints which when passed through Waypt2Traj gives
the solutions to the synthesis problem.

A. Bounding tracking error with reachtubes

The Reachability-based Tracking Error Computation
(RecTrec) procedure computes tracking error bounds using
reachability analysis. Let us fix a control system A =
〈X ,Θ,U, f〉 and a tracking controller gt for A for the
rest of the paper. Let us consider an arbitrary state-input
reference trajectory pair (ξref, uref). Let ε0 > 0 be a constant
such that for every x0 ∈ Θ, ||e(0)||= ||e(ξg(0), ξref(0))||≤
ε0. Let E ⊆ Rn be such that Bε0(0) ⊆ E and let
T � ξref.ltime. Suppose we have a precomputed, suffix-
closed (E, T )-reachtube {(Ri, ti)}ki=0 for the tracking error
dynamics e(t). In the remainder of this section, we will see
how this reachtube can be used to compute a bound on the
tracking e(t) for all t ≤ T .

Consider the prefix of the reachtube {(Ri, ti)}ji=0, j ≤
k, such that ξref.ltime ∈ [tj−1, tj ]. From Definition 2,
{(Ri, ti)}ji=0 is guaranteed to contain e(ξref(t), ξg(t)) for all
t ∈ [0, ξref.ltime] and for all x0 ∈ Θ.

However, E might be much larger than the initial error
bound Bε0(0) which will make the computed reachtube over-
approximation too conservative. To overcome this hurdle, we
use ErrBound (Algorithm 1) to find a prefix of {(Ri, ti)}ki=0

that is a less conservative approximation of e(t).
In more detail, ErrBound (Algorithm 1) takes as input

an (E, T )-reachtube {(Ri, ti)}ki=0 (as discussed above), the
initial error bound ε0, a minimum time bound Tmin of
ξref. This minimum time bound is needed since we do not
know the length of ξref ahead of time. However, if we
assume ξref.ltime ≥ Tmin, then we can bound the error
over t ∈ [0, ξref.ltime]. At Line 1, it first finds the index
idxinit such that Ridxinit is the smallest superset of Bε0(0)
among the Ri’s. At Line 2, the algorithm finds the minimum
index idxend such that tidxend − tidxinit is greater than Tmin.
Then, ErrBound computes ` as the maximum radius of
ConvexHull(Ri, Ri+1) for the Ri’s between indices idxinit
and idxend (line 3). If the reachtube reaches a fixpoint at
Ridxend (i.e. Ridxend ⊇ Ridxend+1), we can show that ` is an
upper bound of ‖e(t)‖ for any time t ∈ [0, ξref.ltime] where
ξref.ltime > Tmin.

Lemma 1 Consider any differentiable reference trajectory
ξref with ξref.ltime > Tmin. Suppose with inputs parameters
(E, T )-reachtube {(Ri, ti)}ki=0 for the tracking error dynam-
ics relative to ξref, ε0 > 0, and Tmin (as defined above),
the ErrBound subroutine produces output ` and idxend. In

Algorithm 1: ErrBound
input : {(Ri, ti)}ki=0, ε0,Tmin

1 idxinit ← arg min
i∈{i | Bε0 (0)⊆Ri}

Radius(Bε0(0))

2 idxend ← min{i | ti − tidxinit > Tmin} − 1
3 `← max{Radius(ConvexHull(Ri, Ri+1)) | i =

idxinit, · · · , idxend − 1}
4 return `, idxend

addition, suppose Ridxend ⊇ Ridxend+1. Then,

‖e(t)‖ ≤ `,∀ t ∈ [0, ξref.ltime], and (6)
e(ξref.ltime) ∈ Ridxend . (7)

Proof: First, since Bε0(0) ⊆ Ridxinit , by the suffix
closure property of {(Ri, ti)}ki=idxinit

, we know that the
reachtube contains all the trajectories of e(t) starting from
Bε0(0). From Line 2, it follows that Tmin ∈ [tidxend −
tidxinit , tidxend+1 − tidxinit). There are two cases to consider:

First, let 0 ≤ t < tidxend − tidxinit , that is, the index of
the reachtube covering idxinit to idxend . From Definition 2,
we know that ∀i = idxinit, · · · , idxend − 1, ∀t ∈ [ti −
tidxinit , ti+1 − tidxinit ], e(t) ∈ ConvexHull(Ri, Ri+1). By
taking the maximum radius of those convex hulls, we have
∀t ∈ [0, tidxend − tidxinit ], ‖e(t)‖≤ `.

Finally, we consider t ≥ tidxend − tidxinit . Since Ridxend ⊇
Ridxend+1, we know that for t ∈ [tidxend − tidxinit , tidxend+1 −
tidxinit ], e(t) ∈ ConvexHull(Ridxend , Ridxend+1) = Ridxend .
Similarly, for t ≥ tidxend+1−tidxinit , we can get e(t) ∈ Ridxend
and we say that the reachtube reaches a fixpoint at Ridxend .
Therefore, we have ∀t ∈ [tidxend − tidxinit , ξref.ltime], ‖e(t)‖≤
`.

For the output error bound ` from the ErrBound subrou-
tine, Lemma 1 gives the following immediately.

Corollary 1 ∀t ∈ [0, ξref.ltime], ξg(t) ∈ B`(ξref(t)).

Discontinuous references: Now we consider the case
when ξref is piece-wise continuous. Let ξref be a concatena-
tion of s continuous state trajectories ξref,1 _ · · · _ ξref,s.
We say that ξref is a piece-wise reference trajectory. For
an arbitrary x0 ∈ Θ, let τj > 0, j = 1, · · · , s − 1
be the switching times when the closed system trajectory
ξg switches from tracking ξref,j to track ξref,j+1. So, each
(ξref,j , uref,j) is a valid continuous state-input trajectory pair
and the corresponding error ej(t) is continuous. The value
of ej(t) can be bounded using the ErrBound subroutine,
provided we know the error ej(τj−1) at the beginning of
tracking ξref,j . However, the main challenge to glue these
error bounds together is that e(t) would be discontinuous
because of the piece-wise ξref(t). Therefore, at a time τj ,
even if we know the bound for ‖ej(τj)‖, the set of initial
states for ej+1(τj) is not the same at ej(τj).

An insight we can get from Example 1 is that although
e(t) is discontinuous at time τjs, some of the variables
influencing e(t) are continuous. For example, ex(t) and
ey(t) in Example 1, representing the errors in position, are



continuous since both the actual and reference positions of
the vehicle are continuous. If we can further bound the value
of other error components over the discontinuities, we could
analyze the error bound for the entire piece-wise reference
trajectory.

Let us write e(t) as [ep(t), ed(t)], where ep(t) = e(t) ↓ p
is the projection to W and ed(t) is the remaining compo-
nents. In Example 1, ed(t) = eθ(t), which can always be
bounded since both θref and θ belongs to [0, 2π].

Without loss of generality, let us assume that all tracking
errors ej for segment ξref,j share the same dymamics , and
therefore, have the same reachtube. In this way, we can use
a single reachtube for the tracking error across different
segments of the piece-wise reference trajectory ξref. This
assumption makes sense for nonlinear vehicular models since
the tracking controller is often designed in a local coordinate
with the reference trajectory as the origin. Therefore, the
error dynamics is often independent of the absolute values
of the reference trajectory.
RecTrec (Algorithm 2) uses the ErrBound subroutine to

compute the error bounds for each segment of the piece-wise
reference trajectory. It takes as input (1) (E, T )-reachtube
{(Ri, ti)}ki=0 and ε0 > 0 satisfying the same conditions as
the inputs to ErrBound, (2) Tmin > 0 which is a minimum
duration of each ξref,j segment, (3) s > 0 which is the num-
ber of segments in the piece-wise reference trajectory, and
(4) ∆d > 0 which is an upper-bound for the error changes in
the discontinuous ed variables across the reference segments.
For each j = 1, · · · , s, Bεj (0) is the set of tracking error
when starting to track the jth segment ξref,j .

Algorithm 2: RecTrec
input : {(Ri, ti)}ki=0, ε0, Tmin, s,∆d

1 for j = 1, · · · , s do
2 `j , idxend ← ErrBound({(Ri, ti)}ki=0, εj−1, Tmin)
3 εj ← Radius(Ridxend) + ∆d

4 return `1, ..., `s

Proposition 1 Consider any piece-wise continuous refer-
ence trajectory ξref = ξref,1 _ · · · _ ξref,s. Suppose with
input parameters (E, T )-reachtube {(Ri, ti)}ki=0 and ε0 to
satisfying the requirements of Lemma 1, and ∀t, ‖er(t)‖≤
∆er , the output from RecTrec is {`j}sj=1. Then,

‖ej(t)||
∆
= ||e(ξg(t), ξref,j(t))‖≤ `j ,

for each j = 1, . . . , s and for all t ∈ [0, ξref.ltime].

The proposition is proved by induction applying Lemma 1
iteratively from the first segment onward.

B. Constructing reference trajectories from waypoints

If ξref(t) is a piece-wise linear reference trajectory, we
say ξref(t) ↓ p is piece-wise linear in the workspace W .
In W , a piece-wise linear trajectory can be determined by
the endpoints of each segment. We call such endpoints the

waypoints of the piece-wise reference. In Figure 1, the points
p0, · · · , ps are waypoints of p(t) = ξref(t) ↓ p.

Consider any vehicle on the plane3 with state variables
px, py, θ, v (x-position, y-position, heading direction, linear
velocity) and input variables a, ω (acceleration and angular
velocity). Once the waypoints {pi}si=0 are fixed, and if
we enforce constant speed v̄ (i.e., ξref(t) ↓ v = v̄ for
all t ∈ [0, ξref.ltime]), then ξref(t) can be uniquely defined
by {pi}si=0 and v̄ using Waypt2Traj (Algorithm 3). The
semantics of ξref and uref returned by Waypt2Traj is that the
reference trajectory requires the vehicle to move at a constant
speed v̄ along the lines connecting the waypoints {pi}si=0.
This constant speed v̄ is an input to the main synthesis
algorithm(Algorithm 4). Every mention of v̄ in this section is
the same as this input. ξref(t), uref(t) can also be constructed
using Waypt2Traj making v an input and dropping a.

We notice that if s = 1, ξref(t), uref(t) returned by
Waypt2Traj is a valid state-input trajectory pair. However, if
s > 1, then the ξref(t), uref(t) returned is usually not a valid
state-input trajectory pair. This is because θref(t) is discontin-
uous at the waypoints and no bounded inputs uref(t) can drive
the vehicle to achieve such θref(t). Instead, ξref(t) a concate-
nation of ξref,i where (ξref,i, uref,i) are state-input trajectory
pairs returned by the function Waypt2Traj({pi−1, pi}, v̄).

Algorithm 3: Waypt2Traj({pi}si=0)
input : {pi}si=0, v̄

1 ∀t ∈ [0,
∑s
i=1

‖pj−pj−1‖2
v̄ ], vref(t)← v̄,

aref(t)← 0, ωref(t)← 0

2 ∀i ≥ 1,∀t ∈
î∑i−1

j=1
‖pj−pj−1‖2

v̄ ,
∑i
j=1

‖pj−pj−1‖2
v̄

ä
,

pref(t)← pi−1 + v̄t−
∑i−1
j=1 ‖pj − pj−1‖2, θref(t)←

mod(atan2((py,i − py,i−1), (px,i − px,i−1), 2π)
3 ξref(t)← [pref(t), θref(t), vref(t)]
4 uref(t)← [aref(t), ωref(t)]
5 return ξref(·), uref(·)

Proposition 2 Given a sequence of waypoints {pi}si=0

and a constant speed v̄, ξref(t), uref(t) produced by
Waypt2Traj({pi}si=0, v̄) satisfy:
(1) pref(t) = ξref(t) ↓ p is a piece-wise continuous function

connecting {pi}si=0.
(2) At time τi =

∑i
j=1‖pj − pj−1‖2/v̄, pref(τi) = pi. We

call {τ1, . . . , τk} the switching times.
(3) ξref(t) = ξref,1(t) _ · · · _ ξref,s(t) and uref(t) =

uref,1(t) _ · · · _ uref,s(t), where (ξref,i, uref,i) are
state-input trajectory pairs returned by the function
Waypt2Traj({pi−1, pi}, v̄)

C. Main Synthesis Algorithm

Our main synthesis algorithm (Algorithm 4) uses reach-
ability analysis on the error dynamics of the tracking con-
troller g, to find reference trajectories from the initial set Θ

3A similar construction works for vehicles in 3D workspaces with
additional variables.



leading to the goal set G. The key inputs to the algorithm
are: (i) a list of obstacles O (represented as polytopes), (ii) a
reachtube given by {Ri, ti}ki=0 (used to compute the bounds
as described in ErrBound and three parameters specifying
the minimum time per segment (Tmin), the maximum num-
ber of line segments in a reference trajectory (Segmax),
and the minimum size of initial set partitions (Partmin). The
output from the algorithm is Decided which stores for each
partition Θ′ of the initial set Θ, a corresponding reference
trajectory Decided or FAIL.

Algorithm 4: Controller synthesis algorithm
input : O, G, {Ri, ti}ki=0, Tmin, Segmax, Partmin
initially: Undecided← {Θ}, Decided← ∅, seg ← 1

1 while (Undecided 6= ∅) do
2 for Θ′ ∈ Undecided do
3 {`i}Segmax

i=1 ←
RecTrec({Ri, ti}ki=0, ε0, Tmin,Segmax,∆d) where
ε0 ← Radius(Θ′)

4 while seg ≤ Segmax do
5 if CheckSAT(Θ′, seg,O, G, {`i}segi=1, Tmin) =

(SAT, {pi}segi=0) then
6 ξ′ref, u

′
ref ← Waypt2Traj({pi}segi=0)

7 Decided← Decided ∪ 〈Θ′, ξ′ref, u
′
ref〉

8 Undecided← Undecided \ {Θ′}
9 seg ← 1

10 break
11 else
12 seg ← seg + 1
13 if seg > Segmax then
14 seg ← 1
15 if Radius(Θ′) > Partmin then
16 Undecided← Undecided∪ Partition(Θ′)\{Θ′}

17 else
18 Undecided← Undecided \ {Θ′}
19 Decided← Decided ∪ 〈Θ′, FAIL〉

20 return Decided

At a high-level, the algorithm proceeds as follows: It
maintains a partition called Undecided of the initial set
Θ. For each subset in Undecided it attempts to find a
reference trajectory ξref of increasing length. If a satisfying
sequence of seg waypoints φwaypoints is found for a subset
Θ′ of Undecided (line 5), then the triple containing the
initial set, corresponding reference trajectory 〈Θ′, ξ′ref, u

′
ref〉

is added to the set Decided (line 7) and Θ′ is removed from
Undecided. (In the next section, we present an implemen-
tation of CheckSAT using MILP.)

On the other hand, if the satisfiability check on line 5
fails, then the length of the sequence of waypoints searched
is increased, until the maximum limit Segmax is reached.
Once the maximum limit is reached and yet a reference
trajectory is not found, then Θ′ is partitioned into smaller
sets and added to Undecided (line 16). When a reference
cannot be found for a Θ′ that is smaller than the smallest
size partition Partmin (with the longest Segmax), then the
algorithm gives up on Θ′ by adding 〈Θ′,FAIL〉 to Decided.

The key invariant of the algorithm is that (i) the set
Decided always maintains a list of subsets of the initial
set Θ′ for each of which either a reference trajectory has
been found or the algorithm has given up (by reaching the
partitioning and segmenting bounds), and (ii) Undecided

contains the remaining subsets of Θ for which decision is

yet to be made. The soundness of the overall algorithm is
given by Theorem 1. The proof follows the standard pattern
of partitioning-based algorithms and will appear in the full
version of the paper.

Theorem 1 Suppose the inputs to Algorithm 4 satisfy the
assumptions in Propositions 1 and 3 and the output is
Decided Then, for each 〈Θ′, ξref, uref〉 ∈ Decided , ∀x0 ∈
Θ′, the unique trajectory ξg of the closed system (A closed
with g(·, ξref, uref)) starting from x0 satisfies the reach avoid
requirement specified by O, G.

D. MILP for implementing CheckSAT

In this section, we briefly describe a MILP encoding of
the CheckSAT function used in our synthesis algorithm. The
key point to note here is that our encoding generates only
linear, O(Segmax× (|O|+|G|)), number of constraints.

The following mixed-integer linear constraints define the
search for the waypoints implemented by the CheckSAT
subroutine. Here p0, . . . , ps are the decision variables, or
the waypoints to be search for, each taking values in the
workspaceW . The `i’s are the constant tracking error bounds
computed for the s segments using RecTrec.

p0 = pref(0) (8)

H
(j)
G ps ≤ b(j)G − ‖H

(j)
G ‖`s, ∀ j = 1, . . . , dP(HG) (9)(Ä

−H(j)
O pi−1 + (b

(j)
O + ‖H(j)

O ‖`i) < M(1− αj)
ä

∧
Ä
−H(j)

O pi + (b
(j)
O + ‖H(j)

o ‖`i) < M(1− αj)
ä) (10)

∀ Poly(H, b) ∈ O, j = 1, . . . , dP(HG), i = 1, . . . , s

dP(H)∑
j=1

αj ≥ 1))

n∑
j=1

|(p(j)i − p
(j)
i−1)|> v̄Tmin) (11)

Constraint (8) enforces the requirement that the first way-
point must be at the center of the initial set (pref(0)).
Constraint (9) ensures that all trajectories following ξref
end in the goal set G, that is, ps (the last waypoint) is
inside the polytope Poly(HG, bG) shrunken by the factor
`s. Constraint (10) captures the requirement that for every
segment defined by (pi−1, pi), both pi−1 and pi must lie
in the same halfspace outside the polytope Poly(Ho, bo)
enlarged by the error factor `i (given by RecTrec). This must
hold for every obstacle O ∈ O. Here αj ∈ {0, 1} and M is
an arbitrarily large constant. Finally, constraint (11) captures
the requirement that every line segment defined by (pi−1, pi)
must have length at least vTmin. This is required to ensure
that the bounds returned by ErrBound indeed bound the error
over the segments. We note that fixing s, the number of
constraints grow linearly with the number of surfaces in the
obstacle and goal set polytopes.

Proposition 3 Fix s ≥ 1 as the number of line segments and
pref(0) ∈ W as the initial position of the reference trajectory.
Assume that:
(1) A closed with gr and gt is such that given any sequence

of s + 1 waypoints in W and any v̄, the piece-wise
reference ξref and input uref are returned by Algorithm 3
satisfies the conditions in Lemma 1 and Proposition 1
with the tracking error e(t).



(2) For the above ξref, fix an ε0 such that e(0) ∈ Bε0(0),
let {`i}si=1 be the error bounds constructed using Algo-
rithm 2.

(3) φwaypoints is satisfiable with waypoints {pi}si=0.
Let ξref(t), uref(t) = Waypt2Traj({pi}si=0, v̄) and pref(t) =
ξref(t) ↓ p. Let ξg(t) be a trajectory of A closed with
gt(·, ξref, uref) starting from ξg(0) with e(0) ∈ Bε0 . Then
ξg(t) satisfies the reach avoid requirement

The function CheckSAT has as its inputs an initial set Θ,
goal set G, unsafe set O, bounds {`i}si=1, minimum time
bound Tmin, number of line segments s, and a velcoty v̄.
It then tries to find {pi}si=0 that satisfies φwaypoints. If the
problem is feasible, then it returns (SAT, {pi}si=0}). If the
problem is infeasible, then it returns UNSAT.

IV. IMPLEMENTATION AND EXPERIMENTATION

Our complete synthesis algorithm including all the dis-
cussed subroutines are implemented in Python and are made
publicly available4. The reachtubes are computed using
the method from [7] although with minor implementation
changes, other tools and libraries could be used. CheckSAT’s
MILP formulation is solved using Gurobi [13].

We will discuss experimental results using the kinematic
car model of Example 1. The tool can be applied to other
vehicle models. Here the vehicle controller gt is the Lya-
punov based tracking controller found in [25]. We created a
number of reach-avoid scenarios to investigate the behavior
of the synthesis algorithm (see Figure 2).

Fig. 2: Example scenarios with reach-avoid specifications. Top:
Barrier (also seen in Figure 1), bottom left: Zigzag, bottom center:
Maze, bottom right: Hallway. Also shown in the figures are
example reference trajectories and actual trajectories, and partitions
of the initial set.

In each scenario, the initial set Θ is centered at the same
point. The size of the initial set is changed to explore how
the execution time and number of partitions changes. Addi-
tionally, the effect of Tmin (minimum duration per segment)

4See the weblink given on the first page.

on the number of partitions and number of segments is also
explored. Results are shown in Table I.

Scenario Size of Θ Tmin (s) Execution
Time (s)

Segs
per ξref

Num
partitions

Barrier

0.707 0.25 2.583 2 - 4 22
0.707 0.125 25.432 FAIL FAIL
0.565 0.25 0.428 4 4
0.565 0.125 0.502 5 4
0.353 0.25 0.0412 4 1
0.353 0.125 0.0425 4 1

Zigzag

0.707 0.25 0.125 6 1
0.707 0.125 32.98 FAIL FAIL
0.565 0.25 0.0868 5 1
0.353 0.125 0.115 6 1
0.353 0.25 0.172 7 1
0.353 0.125 0.115 6 1

Maze

0.500 0.25 10.164 9 10
0.500 0.125 88.748 FAIL FAIL
0.200 0.25 0.722 9 1
0.200 0.125 0.764 9 1

Hallway

1.118 0.25 1.32 4 19
1.118 0.125 1.126 4 19
0.707 0.25 0.027 4 1
0.707 0.125 0.026 4 1
0.707 1 26.064 FAIL FAIL

TABLE I: Results of the implementation. This table shows how
the execution time, number of segments, and number of partitions
change with the size of Θ and Tmin.

Key observations from these experiments are as follows.
(1) The typical running time of the synthesis algorithm on
this (3, 2)-nonlinear control system system with d = 2-
dimensional workspace is around a couple of seconds. This
figure is promising and competitive relative to other tools5

(2) As the minimum time bound Tmin increased, it became
easier for Algorithm 4 to find a valid reference controller.
That is, solutions were found with fewer partitions of Θ.
This is due to the fact that the reachtubes shrink more over
a larger Tmin and the corresponding tracking error bounds
also shrink, which allows tighter reference tracking. If Tmin
is too small, then the reachtubes do not shrink enough and
the tracking error bounds become large. (3) However, we
must be careful to not choose a Tmin that is too large. If
Tmin is too large, it is possible that the line segments may
no longer fit in the safe work space. This is what happened
in the last case of the Hallway scenario. (4) The scenarios
are marked FAIL when the algorithm reaches the partitioning
limit without finding controllers for some of the partitions.
This only happens under “extreme conditions” such as Tmin
being too large or too small.

To show that using reachtubes to get tighter bounds on
`i helps to find reference controllers more reliably, we run
our synthesis algorithm using a Lyapunov function to find
`i. These results are shown in Table II. Note that using a
Lyapunov function to compute the bounds requires the initial
set to be partitioned more than if reachtubes are used to
compute `i. The difference in execution time is significant,
although this comes from the fact that searching a reachtube

5A detailed parallel comparison of this algorithm with other approaches
will be undertaken in the future. In general, direct comparisons are hard
because of platform dependent constant.



for the error bounds takes more time than simply adding
error at each time segment.

Method Size of Θ Execution
Time (s) Segs per ξref Num partitions

Reachtubes 0.707 2.524 2-4 22
Lyapunov 0.707 0.697 2-4 25

TABLE II: Comparison to bloating the obstacles using only the
Lyapunov function vs. using reachtubes.

V. CONCLUSIONS

We presented an algorithm to synthesize reference con-
trollers for nonlinear systems and reach-avoid requirements.
The key novelty is to use locally optimal reachability analysis
to compute tracking error bounds relative to an arbitrary
piece-wise continuous reference trajectory, and then, to use
these bounds for finding specific references using MILP.
This algorithm was tested on various reach-avoid scenarios.
The effects of changing various parameters to synthesize the
controller were studied. In the future, it would be interesting
to add actuation constraints to the MILP formulation and
investigate approaches for handling model uncertainty.
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